This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | ralprg | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | ralprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 3 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 4 | 3 | raleqi | |- ( A. x e. { A , B } ph <-> A. x e. ( { A } u. { B } ) ph ) |
| 5 | ralunb | |- ( A. x e. ( { A } u. { B } ) ph <-> ( A. x e. { A } ph /\ A. x e. { B } ph ) ) |
|
| 6 | 4 5 | bitri | |- ( A. x e. { A , B } ph <-> ( A. x e. { A } ph /\ A. x e. { B } ph ) ) |
| 7 | 1 | ralsng | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |
| 8 | 2 | ralsng | |- ( B e. W -> ( A. x e. { B } ph <-> ch ) ) |
| 9 | 7 8 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A. x e. { A } ph /\ A. x e. { B } ph ) <-> ( ps /\ ch ) ) ) |
| 10 | 6 9 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |