This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfii3.1 | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | dfii3 | |- II = ( J |`t ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii3.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 3 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 3 4 | sstri | |- ( 0 [,] 1 ) C_ CC |
| 6 | eqid | |- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
|
| 7 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 8 | df-ii | |- II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
|
| 9 | 6 7 8 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( J |`t ( 0 [,] 1 ) ) = II ) |
| 10 | 2 5 9 | mp2an | |- ( J |`t ( 0 [,] 1 ) ) = II |
| 11 | 10 | eqcomi | |- II = ( J |`t ( 0 [,] 1 ) ) |