This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhsssh . (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
||
| hhssp3.3 | |- W e. ( SubSp ` U ) |
||
| hhssp3.4 | |- H C_ ~H |
||
| Assertion | hhshsslem2 | |- H e. SH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 3 | hhssp3.3 | |- W e. ( SubSp ` U ) |
|
| 4 | hhssp3.4 | |- H C_ ~H |
|
| 5 | 1 | hhnv | |- U e. NrmCVec |
| 6 | 1 | hh0v | |- 0h = ( 0vec ` U ) |
| 7 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 8 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 9 | 6 7 8 | sspz | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> ( 0vec ` W ) = 0h ) |
| 10 | 5 3 9 | mp2an | |- ( 0vec ` W ) = 0h |
| 11 | 8 | sspnv | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> W e. NrmCVec ) |
| 12 | 5 3 11 | mp2an | |- W e. NrmCVec |
| 13 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 14 | 13 7 | nvzcl | |- ( W e. NrmCVec -> ( 0vec ` W ) e. ( BaseSet ` W ) ) |
| 15 | 12 14 | ax-mp | |- ( 0vec ` W ) e. ( BaseSet ` W ) |
| 16 | 1 2 3 4 | hhshsslem1 | |- H = ( BaseSet ` W ) |
| 17 | 15 16 | eleqtrri | |- ( 0vec ` W ) e. H |
| 18 | 10 17 | eqeltrri | |- 0h e. H |
| 19 | 4 18 | pm3.2i | |- ( H C_ ~H /\ 0h e. H ) |
| 20 | 1 | hhva | |- +h = ( +v ` U ) |
| 21 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 22 | 16 20 21 8 | sspgval | |- ( ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) /\ ( x e. H /\ y e. H ) ) -> ( x ( +v ` W ) y ) = ( x +h y ) ) |
| 23 | 5 3 22 | mpanl12 | |- ( ( x e. H /\ y e. H ) -> ( x ( +v ` W ) y ) = ( x +h y ) ) |
| 24 | 16 21 | nvgcl | |- ( ( W e. NrmCVec /\ x e. H /\ y e. H ) -> ( x ( +v ` W ) y ) e. H ) |
| 25 | 12 24 | mp3an1 | |- ( ( x e. H /\ y e. H ) -> ( x ( +v ` W ) y ) e. H ) |
| 26 | 23 25 | eqeltrrd | |- ( ( x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
| 27 | 26 | rgen2 | |- A. x e. H A. y e. H ( x +h y ) e. H |
| 28 | 1 | hhsm | |- .h = ( .sOLD ` U ) |
| 29 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 30 | 16 28 29 8 | sspsval | |- ( ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) /\ ( x e. CC /\ y e. H ) ) -> ( x ( .sOLD ` W ) y ) = ( x .h y ) ) |
| 31 | 5 3 30 | mpanl12 | |- ( ( x e. CC /\ y e. H ) -> ( x ( .sOLD ` W ) y ) = ( x .h y ) ) |
| 32 | 16 29 | nvscl | |- ( ( W e. NrmCVec /\ x e. CC /\ y e. H ) -> ( x ( .sOLD ` W ) y ) e. H ) |
| 33 | 12 32 | mp3an1 | |- ( ( x e. CC /\ y e. H ) -> ( x ( .sOLD ` W ) y ) e. H ) |
| 34 | 31 33 | eqeltrrd | |- ( ( x e. CC /\ y e. H ) -> ( x .h y ) e. H ) |
| 35 | 34 | rgen2 | |- A. x e. CC A. y e. H ( x .h y ) e. H |
| 36 | 27 35 | pm3.2i | |- ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) |
| 37 | issh2 | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |
|
| 38 | 19 36 37 | mpbir2an | |- H e. SH |