This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspz.z | |- Z = ( 0vec ` U ) |
|
| sspz.q | |- Q = ( 0vec ` W ) |
||
| sspz.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspz | |- ( ( U e. NrmCVec /\ W e. H ) -> Q = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspz.z | |- Z = ( 0vec ` U ) |
|
| 2 | sspz.q | |- Q = ( 0vec ` W ) |
|
| 3 | sspz.h | |- H = ( SubSp ` U ) |
|
| 4 | 3 | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 5 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 6 | 5 2 | nvzcl | |- ( W e. NrmCVec -> Q e. ( BaseSet ` W ) ) |
| 7 | 6 6 | jca | |- ( W e. NrmCVec -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
| 8 | 4 7 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
| 9 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 10 | eqid | |- ( -v ` W ) = ( -v ` W ) |
|
| 11 | 5 9 10 3 | sspmval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
| 12 | 8 11 | mpdan | |- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
| 13 | 5 10 2 | nvmid | |- ( ( W e. NrmCVec /\ Q e. ( BaseSet ` W ) ) -> ( Q ( -v ` W ) Q ) = Q ) |
| 14 | 4 6 13 | syl2anc2 | |- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = Q ) |
| 15 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 16 | 15 5 3 | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> ( BaseSet ` W ) C_ ( BaseSet ` U ) ) |
| 17 | 4 6 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` W ) ) |
| 18 | 16 17 | sseldd | |- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` U ) ) |
| 19 | 15 9 1 | nvmid | |- ( ( U e. NrmCVec /\ Q e. ( BaseSet ` U ) ) -> ( Q ( -v ` U ) Q ) = Z ) |
| 20 | 18 19 | syldan | |- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` U ) Q ) = Z ) |
| 21 | 12 14 20 | 3eqtr3d | |- ( ( U e. NrmCVec /\ W e. H ) -> Q = Z ) |