This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhsssh . (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
||
| hhssp3.3 | |- W e. ( SubSp ` U ) |
||
| hhssp3.4 | |- H C_ ~H |
||
| Assertion | hhshsslem1 | |- H = ( BaseSet ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 3 | hhssp3.3 | |- W e. ( SubSp ` U ) |
|
| 4 | hhssp3.4 | |- H C_ ~H |
|
| 5 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 6 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 7 | 5 6 | bafval | |- ( BaseSet ` W ) = ran ( +v ` W ) |
| 8 | 1 | hhnv | |- U e. NrmCVec |
| 9 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 10 | 9 | sspnv | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> W e. NrmCVec ) |
| 11 | 8 3 10 | mp2an | |- W e. NrmCVec |
| 12 | 6 | nvgrp | |- ( W e. NrmCVec -> ( +v ` W ) e. GrpOp ) |
| 13 | grporndm | |- ( ( +v ` W ) e. GrpOp -> ran ( +v ` W ) = dom dom ( +v ` W ) ) |
|
| 14 | 11 12 13 | mp2b | |- ran ( +v ` W ) = dom dom ( +v ` W ) |
| 15 | 2 | fveq2i | |- ( +v ` W ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 16 | eqid | |- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
|
| 17 | 16 | vafval | |- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) |
| 18 | opex | |- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
|
| 19 | normf | |- normh : ~H --> RR |
|
| 20 | ax-hilex | |- ~H e. _V |
|
| 21 | fex | |- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
|
| 22 | 19 20 21 | mp2an | |- normh e. _V |
| 23 | 22 | resex | |- ( normh |` H ) e. _V |
| 24 | 18 23 | op1st | |- ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 25 | 24 | fveq2i | |- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) |
| 26 | hilablo | |- +h e. AbelOp |
|
| 27 | resexg | |- ( +h e. AbelOp -> ( +h |` ( H X. H ) ) e. _V ) |
|
| 28 | 26 27 | ax-mp | |- ( +h |` ( H X. H ) ) e. _V |
| 29 | hvmulex | |- .h e. _V |
|
| 30 | 29 | resex | |- ( .h |` ( CC X. H ) ) e. _V |
| 31 | 28 30 | op1st | |- ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) = ( +h |` ( H X. H ) ) |
| 32 | 25 31 | eqtri | |- ( 1st ` ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) ) = ( +h |` ( H X. H ) ) |
| 33 | 17 32 | eqtri | |- ( +v ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( +h |` ( H X. H ) ) |
| 34 | 15 33 | eqtri | |- ( +v ` W ) = ( +h |` ( H X. H ) ) |
| 35 | 34 | dmeqi | |- dom ( +v ` W ) = dom ( +h |` ( H X. H ) ) |
| 36 | xpss12 | |- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
|
| 37 | 4 4 36 | mp2an | |- ( H X. H ) C_ ( ~H X. ~H ) |
| 38 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 39 | 38 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 40 | 37 39 | sseqtrri | |- ( H X. H ) C_ dom +h |
| 41 | ssdmres | |- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
|
| 42 | 40 41 | mpbi | |- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
| 43 | 35 42 | eqtri | |- dom ( +v ` W ) = ( H X. H ) |
| 44 | 43 | dmeqi | |- dom dom ( +v ` W ) = dom ( H X. H ) |
| 45 | dmxpid | |- dom ( H X. H ) = H |
|
| 46 | 44 45 | eqtri | |- dom dom ( +v ` W ) = H |
| 47 | 14 46 | eqtri | |- ran ( +v ` W ) = H |
| 48 | 7 47 | eqtri | |- ( BaseSet ` W ) = H |
| 49 | 48 | eqcomi | |- H = ( BaseSet ` W ) |