This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhsssh . (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | ||
| hhssp3.3 | ⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) | ||
| hhssp3.4 | ⊢ 𝐻 ⊆ ℋ | ||
| Assertion | hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 3 | hhssp3.3 | ⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) | |
| 4 | hhssp3.4 | ⊢ 𝐻 ⊆ ℋ | |
| 5 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 6 | 1 | hh0v | ⊢ 0ℎ = ( 0vec ‘ 𝑈 ) |
| 7 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 9 | 6 7 8 | sspz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → ( 0vec ‘ 𝑊 ) = 0ℎ ) |
| 10 | 5 3 9 | mp2an | ⊢ ( 0vec ‘ 𝑊 ) = 0ℎ |
| 11 | 8 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑊 ∈ NrmCVec ) |
| 12 | 5 3 11 | mp2an | ⊢ 𝑊 ∈ NrmCVec |
| 13 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 14 | 13 7 | nvzcl | ⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 15 | 12 14 | ax-mp | ⊢ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) |
| 16 | 1 2 3 4 | hhshsslem1 | ⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
| 17 | 15 16 | eleqtrri | ⊢ ( 0vec ‘ 𝑊 ) ∈ 𝐻 |
| 18 | 10 17 | eqeltrri | ⊢ 0ℎ ∈ 𝐻 |
| 19 | 4 18 | pm3.2i | ⊢ ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) |
| 20 | 1 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
| 21 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 22 | 16 20 21 8 | sspgval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 23 | 5 3 22 | mpanl12 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 24 | 16 21 | nvgcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
| 25 | 12 24 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +𝑣 ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
| 26 | 23 25 | eqeltrrd | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
| 27 | 26 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 |
| 28 | 1 | hhsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
| 29 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 30 | 16 28 29 8 | sspsval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ) |
| 31 | 5 3 30 | mpanl12 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ) |
| 32 | 16 29 | nvscl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
| 33 | 12 32 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) 𝑦 ) ∈ 𝐻 ) |
| 34 | 31 33 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
| 35 | 34 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 |
| 36 | 27 35 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
| 37 | issh2 | ⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) | |
| 38 | 19 36 37 | mpbir2an | ⊢ 𝐻 ∈ Sℋ |