This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
||
| Assertion | hhsssh | |- ( H e. SH <-> ( W e. ( SubSp ` U ) /\ H C_ ~H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 3 | 1 2 | hhsst | |- ( H e. SH -> W e. ( SubSp ` U ) ) |
| 4 | shss | |- ( H e. SH -> H C_ ~H ) |
|
| 5 | 3 4 | jca | |- ( H e. SH -> ( W e. ( SubSp ` U ) /\ H C_ ~H ) ) |
| 6 | eleq1 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H e. SH <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) e. SH ) ) |
|
| 7 | eqid | |- <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. |
|
| 8 | xpeq1 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. H ) ) |
|
| 9 | xpeq2 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 10 | 8 9 | eqtrd | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
| 11 | 10 | reseq2d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) |
| 12 | xpeq2 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( CC X. H ) = ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 13 | 12 | reseq2d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( .h |` ( CC X. H ) ) = ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) |
| 14 | 11 13 | opeq12d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. = <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. ) |
| 15 | reseq2 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( normh |` H ) = ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 16 | 14 15 | opeq12d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) |
| 17 | 2 16 | eqtrid | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> W = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) |
| 18 | 17 | eleq1d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( W e. ( SubSp ` U ) <-> <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) ) ) |
| 19 | sseq1 | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H C_ ~H <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) |
|
| 20 | 18 19 | anbi12d | |- ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) <-> ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) ) |
| 21 | xpeq1 | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. ~H ) ) |
|
| 22 | xpeq2 | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 23 | 21 22 | eqtrd | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
| 24 | 23 | reseq2d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( +h |` ( ~H X. ~H ) ) = ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) |
| 25 | xpeq2 | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( CC X. ~H ) = ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 26 | 25 | reseq2d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( .h |` ( CC X. ~H ) ) = ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) |
| 27 | 24 26 | opeq12d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. = <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. ) |
| 28 | reseq2 | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( normh |` ~H ) = ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) |
|
| 29 | 27 28 | opeq12d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) |
| 30 | 29 | eleq1d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) <-> <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) ) ) |
| 31 | sseq1 | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H C_ ~H <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) |
|
| 32 | 30 31 | anbi12d | |- ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) /\ ~H C_ ~H ) <-> ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) ) |
| 33 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 34 | ffn | |- ( +h : ( ~H X. ~H ) --> ~H -> +h Fn ( ~H X. ~H ) ) |
|
| 35 | fnresdm | |- ( +h Fn ( ~H X. ~H ) -> ( +h |` ( ~H X. ~H ) ) = +h ) |
|
| 36 | 33 34 35 | mp2b | |- ( +h |` ( ~H X. ~H ) ) = +h |
| 37 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 38 | ffn | |- ( .h : ( CC X. ~H ) --> ~H -> .h Fn ( CC X. ~H ) ) |
|
| 39 | fnresdm | |- ( .h Fn ( CC X. ~H ) -> ( .h |` ( CC X. ~H ) ) = .h ) |
|
| 40 | 37 38 39 | mp2b | |- ( .h |` ( CC X. ~H ) ) = .h |
| 41 | 36 40 | opeq12i | |- <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. = <. +h , .h >. |
| 42 | normf | |- normh : ~H --> RR |
|
| 43 | ffn | |- ( normh : ~H --> RR -> normh Fn ~H ) |
|
| 44 | fnresdm | |- ( normh Fn ~H -> ( normh |` ~H ) = normh ) |
|
| 45 | 42 43 44 | mp2b | |- ( normh |` ~H ) = normh |
| 46 | 41 45 | opeq12i | |- <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = <. <. +h , .h >. , normh >. |
| 47 | 46 1 | eqtr4i | |- <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = U |
| 48 | 1 | hhnv | |- U e. NrmCVec |
| 49 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 50 | 49 | sspid | |- ( U e. NrmCVec -> U e. ( SubSp ` U ) ) |
| 51 | 48 50 | ax-mp | |- U e. ( SubSp ` U ) |
| 52 | 47 51 | eqeltri | |- <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) |
| 53 | ssid | |- ~H C_ ~H |
|
| 54 | 52 53 | pm3.2i | |- ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) /\ ~H C_ ~H ) |
| 55 | 20 32 54 | elimhyp | |- ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) |
| 56 | 55 | simpli | |- <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) |
| 57 | 55 | simpri | |- if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H |
| 58 | 1 7 56 57 | hhshsslem2 | |- if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) e. SH |
| 59 | 6 58 | dedth | |- ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) -> H e. SH ) |
| 60 | 5 59 | impbii | |- ( H e. SH <-> ( W e. ( SubSp ` U ) /\ H C_ ~H ) ) |