This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of Beran p. 95. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issh2 | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
|
| 2 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 3 | ffun | |- ( +h : ( ~H X. ~H ) --> ~H -> Fun +h ) |
|
| 4 | 2 3 | ax-mp | |- Fun +h |
| 5 | xpss12 | |- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
|
| 6 | 5 | anidms | |- ( H C_ ~H -> ( H X. H ) C_ ( ~H X. ~H ) ) |
| 7 | 2 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 8 | 6 7 | sseqtrrdi | |- ( H C_ ~H -> ( H X. H ) C_ dom +h ) |
| 9 | funimassov | |- ( ( Fun +h /\ ( H X. H ) C_ dom +h ) -> ( ( +h " ( H X. H ) ) C_ H <-> A. x e. H A. y e. H ( x +h y ) e. H ) ) |
|
| 10 | 4 8 9 | sylancr | |- ( H C_ ~H -> ( ( +h " ( H X. H ) ) C_ H <-> A. x e. H A. y e. H ( x +h y ) e. H ) ) |
| 11 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 12 | ffun | |- ( .h : ( CC X. ~H ) --> ~H -> Fun .h ) |
|
| 13 | 11 12 | ax-mp | |- Fun .h |
| 14 | xpss2 | |- ( H C_ ~H -> ( CC X. H ) C_ ( CC X. ~H ) ) |
|
| 15 | 11 | fdmi | |- dom .h = ( CC X. ~H ) |
| 16 | 14 15 | sseqtrrdi | |- ( H C_ ~H -> ( CC X. H ) C_ dom .h ) |
| 17 | funimassov | |- ( ( Fun .h /\ ( CC X. H ) C_ dom .h ) -> ( ( .h " ( CC X. H ) ) C_ H <-> A. x e. CC A. y e. H ( x .h y ) e. H ) ) |
|
| 18 | 13 16 17 | sylancr | |- ( H C_ ~H -> ( ( .h " ( CC X. H ) ) C_ H <-> A. x e. CC A. y e. H ( x .h y ) e. H ) ) |
| 19 | 10 18 | anbi12d | |- ( H C_ ~H -> ( ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) <-> ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |
| 20 | 19 | adantr | |- ( ( H C_ ~H /\ 0h e. H ) -> ( ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) <-> ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |
| 21 | 20 | pm5.32i | |- ( ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |
| 22 | 1 21 | bitri | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( A. x e. H A. y e. H ( x +h y ) e. H /\ A. x e. CC A. y e. H ( x .h y ) e. H ) ) ) |