This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhsssh . (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | ||
| hhssp3.3 | ⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) | ||
| hhssp3.4 | ⊢ 𝐻 ⊆ ℋ | ||
| Assertion | hhshsslem1 | ⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 3 | hhssp3.3 | ⊢ 𝑊 ∈ ( SubSp ‘ 𝑈 ) | |
| 4 | hhssp3.4 | ⊢ 𝐻 ⊆ ℋ | |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 7 | 5 6 | bafval | ⊢ ( BaseSet ‘ 𝑊 ) = ran ( +𝑣 ‘ 𝑊 ) |
| 8 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 9 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 10 | 9 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑊 ∈ NrmCVec ) |
| 11 | 8 3 10 | mp2an | ⊢ 𝑊 ∈ NrmCVec |
| 12 | 6 | nvgrp | ⊢ ( 𝑊 ∈ NrmCVec → ( +𝑣 ‘ 𝑊 ) ∈ GrpOp ) |
| 13 | grporndm | ⊢ ( ( +𝑣 ‘ 𝑊 ) ∈ GrpOp → ran ( +𝑣 ‘ 𝑊 ) = dom dom ( +𝑣 ‘ 𝑊 ) ) | |
| 14 | 11 12 13 | mp2b | ⊢ ran ( +𝑣 ‘ 𝑊 ) = dom dom ( +𝑣 ‘ 𝑊 ) |
| 15 | 2 | fveq2i | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
| 16 | eqid | ⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) | |
| 17 | 16 | vafval | ⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) |
| 18 | opex | ⊢ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ∈ V | |
| 19 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 20 | ax-hilex | ⊢ ℋ ∈ V | |
| 21 | fex | ⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → normℎ ∈ V ) | |
| 22 | 19 20 21 | mp2an | ⊢ normℎ ∈ V |
| 23 | 22 | resex | ⊢ ( normℎ ↾ 𝐻 ) ∈ V |
| 24 | 18 23 | op1st | ⊢ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 |
| 25 | 24 | fveq2i | ⊢ ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) = ( 1st ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) |
| 26 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 27 | resexg | ⊢ ( +ℎ ∈ AbelOp → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V ) | |
| 28 | 26 27 | ax-mp | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ V |
| 29 | hvmulex | ⊢ ·ℎ ∈ V | |
| 30 | 29 | resex | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ∈ V |
| 31 | 28 30 | op1st | ⊢ ( 1st ‘ 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 32 | 25 31 | eqtri | ⊢ ( 1st ‘ ( 1st ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 33 | 17 32 | eqtri | ⊢ ( +𝑣 ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 34 | 15 33 | eqtri | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 35 | 34 | dmeqi | ⊢ dom ( +𝑣 ‘ 𝑊 ) = dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) |
| 36 | xpss12 | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) | |
| 37 | 4 4 36 | mp2an | ⊢ ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) |
| 38 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 39 | 38 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 40 | 37 39 | sseqtrri | ⊢ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ |
| 41 | ssdmres | ⊢ ( ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) ) | |
| 42 | 40 41 | mpbi | ⊢ dom ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( 𝐻 × 𝐻 ) |
| 43 | 35 42 | eqtri | ⊢ dom ( +𝑣 ‘ 𝑊 ) = ( 𝐻 × 𝐻 ) |
| 44 | 43 | dmeqi | ⊢ dom dom ( +𝑣 ‘ 𝑊 ) = dom ( 𝐻 × 𝐻 ) |
| 45 | dmxpid | ⊢ dom ( 𝐻 × 𝐻 ) = 𝐻 | |
| 46 | 44 45 | eqtri | ⊢ dom dom ( +𝑣 ‘ 𝑊 ) = 𝐻 |
| 47 | 14 46 | eqtri | ⊢ ran ( +𝑣 ‘ 𝑊 ) = 𝐻 |
| 48 | 7 47 | eqtri | ⊢ ( BaseSet ‘ 𝑊 ) = 𝐻 |
| 49 | 48 | eqcomi | ⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |