This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash2iun1dif1.a | |- ( ph -> A e. Fin ) |
|
| hash2iun1dif1.b | |- B = ( A \ { x } ) |
||
| hash2iun1dif1.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. Fin ) |
||
| hash2iun1dif1.da | |- ( ph -> Disj_ x e. A U_ y e. B C ) |
||
| hash2iun1dif1.db | |- ( ( ph /\ x e. A ) -> Disj_ y e. B C ) |
||
| hash2iun1dif1.1 | |- ( ( ph /\ x e. A /\ y e. B ) -> ( # ` C ) = 1 ) |
||
| Assertion | hash2iun1dif1 | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2iun1dif1.a | |- ( ph -> A e. Fin ) |
|
| 2 | hash2iun1dif1.b | |- B = ( A \ { x } ) |
|
| 3 | hash2iun1dif1.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. Fin ) |
|
| 4 | hash2iun1dif1.da | |- ( ph -> Disj_ x e. A U_ y e. B C ) |
|
| 5 | hash2iun1dif1.db | |- ( ( ph /\ x e. A ) -> Disj_ y e. B C ) |
|
| 6 | hash2iun1dif1.1 | |- ( ( ph /\ x e. A /\ y e. B ) -> ( # ` C ) = 1 ) |
|
| 7 | diffi | |- ( A e. Fin -> ( A \ { x } ) e. Fin ) |
|
| 8 | 1 7 | syl | |- ( ph -> ( A \ { x } ) e. Fin ) |
| 9 | 8 | adantr | |- ( ( ph /\ x e. A ) -> ( A \ { x } ) e. Fin ) |
| 10 | 2 9 | eqeltrid | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
| 11 | 1 10 3 4 5 | hash2iun | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = sum_ x e. A sum_ y e. B ( # ` C ) ) |
| 12 | 6 | 2sumeq2dv | |- ( ph -> sum_ x e. A sum_ y e. B ( # ` C ) = sum_ x e. A sum_ y e. B 1 ) |
| 13 | 1cnd | |- ( ( ph /\ x e. A ) -> 1 e. CC ) |
|
| 14 | fsumconst | |- ( ( B e. Fin /\ 1 e. CC ) -> sum_ y e. B 1 = ( ( # ` B ) x. 1 ) ) |
|
| 15 | 10 13 14 | syl2anc | |- ( ( ph /\ x e. A ) -> sum_ y e. B 1 = ( ( # ` B ) x. 1 ) ) |
| 16 | 15 | sumeq2dv | |- ( ph -> sum_ x e. A sum_ y e. B 1 = sum_ x e. A ( ( # ` B ) x. 1 ) ) |
| 17 | 2 | a1i | |- ( ( ph /\ x e. A ) -> B = ( A \ { x } ) ) |
| 18 | 17 | fveq2d | |- ( ( ph /\ x e. A ) -> ( # ` B ) = ( # ` ( A \ { x } ) ) ) |
| 19 | hashdifsn | |- ( ( A e. Fin /\ x e. A ) -> ( # ` ( A \ { x } ) ) = ( ( # ` A ) - 1 ) ) |
|
| 20 | 1 19 | sylan | |- ( ( ph /\ x e. A ) -> ( # ` ( A \ { x } ) ) = ( ( # ` A ) - 1 ) ) |
| 21 | 18 20 | eqtrd | |- ( ( ph /\ x e. A ) -> ( # ` B ) = ( ( # ` A ) - 1 ) ) |
| 22 | 21 | oveq1d | |- ( ( ph /\ x e. A ) -> ( ( # ` B ) x. 1 ) = ( ( ( # ` A ) - 1 ) x. 1 ) ) |
| 23 | 22 | sumeq2dv | |- ( ph -> sum_ x e. A ( ( # ` B ) x. 1 ) = sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) ) |
| 24 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 25 | 1 24 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 26 | 25 | nn0cnd | |- ( ph -> ( # ` A ) e. CC ) |
| 27 | peano2cnm | |- ( ( # ` A ) e. CC -> ( ( # ` A ) - 1 ) e. CC ) |
|
| 28 | 26 27 | syl | |- ( ph -> ( ( # ` A ) - 1 ) e. CC ) |
| 29 | 28 | mulridd | |- ( ph -> ( ( ( # ` A ) - 1 ) x. 1 ) = ( ( # ` A ) - 1 ) ) |
| 30 | 29 | sumeq2sdv | |- ( ph -> sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) = sum_ x e. A ( ( # ` A ) - 1 ) ) |
| 31 | fsumconst | |- ( ( A e. Fin /\ ( ( # ` A ) - 1 ) e. CC ) -> sum_ x e. A ( ( # ` A ) - 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |
|
| 32 | 1 28 31 | syl2anc | |- ( ph -> sum_ x e. A ( ( # ` A ) - 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |
| 33 | 30 32 | eqtrd | |- ( ph -> sum_ x e. A ( ( ( # ` A ) - 1 ) x. 1 ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |
| 34 | 16 23 33 | 3eqtrd | |- ( ph -> sum_ x e. A sum_ y e. B 1 = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |
| 35 | 11 12 34 | 3eqtrd | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = ( ( # ` A ) x. ( ( # ` A ) - 1 ) ) ) |