This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashrabrex.1 | |- ( ph -> Y e. Fin ) |
|
| hashrabrex.2 | |- ( ( ph /\ y e. Y ) -> { x e. X | ps } e. Fin ) |
||
| hashrabrex.3 | |- ( ph -> Disj_ y e. Y { x e. X | ps } ) |
||
| Assertion | hashrabrex | |- ( ph -> ( # ` { x e. X | E. y e. Y ps } ) = sum_ y e. Y ( # ` { x e. X | ps } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashrabrex.1 | |- ( ph -> Y e. Fin ) |
|
| 2 | hashrabrex.2 | |- ( ( ph /\ y e. Y ) -> { x e. X | ps } e. Fin ) |
|
| 3 | hashrabrex.3 | |- ( ph -> Disj_ y e. Y { x e. X | ps } ) |
|
| 4 | iunrab | |- U_ y e. Y { x e. X | ps } = { x e. X | E. y e. Y ps } |
|
| 5 | 4 | eqcomi | |- { x e. X | E. y e. Y ps } = U_ y e. Y { x e. X | ps } |
| 6 | 5 | fveq2i | |- ( # ` { x e. X | E. y e. Y ps } ) = ( # ` U_ y e. Y { x e. X | ps } ) |
| 7 | 1 2 3 | hashiun | |- ( ph -> ( # ` U_ y e. Y { x e. X | ps } ) = sum_ y e. Y ( # ` { x e. X | ps } ) ) |
| 8 | 6 7 | eqtrid | |- ( ph -> ( # ` { x e. X | E. y e. Y ps } ) = sum_ y e. Y ( # ` { x e. X | ps } ) ) |