This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash2iun.a | |- ( ph -> A e. Fin ) |
|
| hash2iun.b | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
||
| hash2iun.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. Fin ) |
||
| hash2iun.da | |- ( ph -> Disj_ x e. A U_ y e. B C ) |
||
| hash2iun.db | |- ( ( ph /\ x e. A ) -> Disj_ y e. B C ) |
||
| Assertion | hash2iun | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = sum_ x e. A sum_ y e. B ( # ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2iun.a | |- ( ph -> A e. Fin ) |
|
| 2 | hash2iun.b | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
|
| 3 | hash2iun.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. Fin ) |
|
| 4 | hash2iun.da | |- ( ph -> Disj_ x e. A U_ y e. B C ) |
|
| 5 | hash2iun.db | |- ( ( ph /\ x e. A ) -> Disj_ y e. B C ) |
|
| 6 | 3 | 3expa | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> C e. Fin ) |
| 7 | 6 | ralrimiva | |- ( ( ph /\ x e. A ) -> A. y e. B C e. Fin ) |
| 8 | iunfi | |- ( ( B e. Fin /\ A. y e. B C e. Fin ) -> U_ y e. B C e. Fin ) |
|
| 9 | 2 7 8 | syl2anc | |- ( ( ph /\ x e. A ) -> U_ y e. B C e. Fin ) |
| 10 | 1 9 4 | hashiun | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = sum_ x e. A ( # ` U_ y e. B C ) ) |
| 11 | 2 6 5 | hashiun | |- ( ( ph /\ x e. A ) -> ( # ` U_ y e. B C ) = sum_ y e. B ( # ` C ) ) |
| 12 | 11 | sumeq2dv | |- ( ph -> sum_ x e. A ( # ` U_ y e. B C ) = sum_ x e. A sum_ y e. B ( # ` C ) ) |
| 13 | 10 12 | eqtrd | |- ( ph -> ( # ` U_ x e. A U_ y e. B C ) = sum_ x e. A sum_ y e. B ( # ` C ) ) |