This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hash2iun1dif1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hash2iun1dif1.b | ⊢ 𝐵 = ( 𝐴 ∖ { 𝑥 } ) | ||
| hash2iun1dif1.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) | ||
| hash2iun1dif1.da | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) | ||
| hash2iun1dif1.db | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Disj 𝑦 ∈ 𝐵 𝐶 ) | ||
| hash2iun1dif1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ♯ ‘ 𝐶 ) = 1 ) | ||
| Assertion | hash2iun1dif1 | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2iun1dif1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hash2iun1dif1.b | ⊢ 𝐵 = ( 𝐴 ∖ { 𝑥 } ) | |
| 3 | hash2iun1dif1.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) | |
| 4 | hash2iun1dif1.da | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) | |
| 5 | hash2iun1dif1.db | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Disj 𝑦 ∈ 𝐵 𝐶 ) | |
| 6 | hash2iun1dif1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ♯ ‘ 𝐶 ) = 1 ) | |
| 7 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
| 10 | 2 9 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 11 | 1 10 3 4 5 | hash2iun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |
| 12 | 6 | 2sumeq2dv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 ) |
| 13 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℂ ) | |
| 14 | fsumconst | ⊢ ( ( 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
| 16 | 15 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 = Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
| 17 | 2 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = ( 𝐴 ∖ { 𝑥 } ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) ) |
| 19 | hashdifsn | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) | |
| 20 | 1 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 21 | 18 20 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) ) |
| 23 | 22 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐵 ) · 1 ) = Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) ) |
| 24 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 25 | 1 24 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 26 | 25 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 27 | peano2cnm | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℂ → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) | |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) |
| 29 | 28 | mulridd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 30 | 29 | sumeq2sdv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 31 | fsumconst | ⊢ ( ( 𝐴 ∈ Fin ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) | |
| 32 | 1 28 31 | syl2anc | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 33 | 30 32 | eqtrd | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 34 | 16 23 33 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 35 | 11 12 34 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |