This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifsn | |- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( B e. A -> { B } C_ A ) |
|
| 2 | hashssdif | |- ( ( A e. Fin /\ { B } C_ A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - ( # ` { B } ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - ( # ` { B } ) ) ) |
| 4 | hashsng | |- ( B e. A -> ( # ` { B } ) = 1 ) |
|
| 5 | 4 | adantl | |- ( ( A e. Fin /\ B e. A ) -> ( # ` { B } ) = 1 ) |
| 6 | 5 | oveq2d | |- ( ( A e. Fin /\ B e. A ) -> ( ( # ` A ) - ( # ` { B } ) ) = ( ( # ` A ) - 1 ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |