This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 16-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfnq | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrnq | ⊢ ( 𝐴 ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) | |
| 2 | distrnq | ⊢ ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) | |
| 3 | 1nq | ⊢ 1Q ∈ Q | |
| 4 | addclnq | ⊢ ( ( 1Q ∈ Q ∧ 1Q ∈ Q ) → ( 1Q +Q 1Q ) ∈ Q ) | |
| 5 | 3 3 4 | mp2an | ⊢ ( 1Q +Q 1Q ) ∈ Q |
| 6 | recidnq | ⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q |
| 8 | 7 7 | oveq12i | ⊢ ( ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 9 | 2 8 | eqtri | ⊢ ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 1Q +Q 1Q ) |
| 10 | 9 | oveq1i | ⊢ ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 11 | 7 | oveq2i | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) |
| 12 | mulassnq | ⊢ ( ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) | |
| 13 | mulcomnq | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) = ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) | |
| 14 | 13 | oveq1i | ⊢ ( ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( 1Q +Q 1Q ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 15 | 12 14 | eqtr3i | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q ( ( 1Q +Q 1Q ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 16 | recclnq | ⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ) | |
| 17 | addclnq | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ∧ ( *Q ‘ ( 1Q +Q 1Q ) ) ∈ Q ) → ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q ) | |
| 18 | 16 16 17 | syl2anc | ⊢ ( ( 1Q +Q 1Q ) ∈ Q → ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q ) |
| 19 | mulidnq | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ Q → ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) | |
| 20 | 5 18 19 | mp2b | ⊢ ( ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ·Q 1Q ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 21 | 11 15 20 | 3eqtr3i | ⊢ ( ( ( 1Q +Q 1Q ) ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) |
| 22 | 10 21 7 | 3eqtr3i | ⊢ ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) = 1Q |
| 23 | 22 | oveq2i | ⊢ ( 𝐴 ·Q ( ( *Q ‘ ( 1Q +Q 1Q ) ) +Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 𝐴 ·Q 1Q ) |
| 24 | 1 23 | eqtr3i | ⊢ ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = ( 𝐴 ·Q 1Q ) |
| 25 | mulidnq | ⊢ ( 𝐴 ∈ Q → ( 𝐴 ·Q 1Q ) = 𝐴 ) | |
| 26 | 24 25 | eqtrid | ⊢ ( 𝐴 ∈ Q → ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 ) |
| 27 | ovex | ⊢ ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∈ V | |
| 28 | oveq12 | ⊢ ( ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ∧ 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) → ( 𝑥 +Q 𝑥 ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ) | |
| 29 | 28 | anidms | ⊢ ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) → ( 𝑥 +Q 𝑥 ) = ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) ) |
| 30 | 29 | eqeq1d | ⊢ ( 𝑥 = ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) → ( ( 𝑥 +Q 𝑥 ) = 𝐴 ↔ ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 ) ) |
| 31 | 27 30 | spcev | ⊢ ( ( ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) +Q ( 𝐴 ·Q ( *Q ‘ ( 1Q +Q 1Q ) ) ) ) = 𝐴 → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |
| 32 | 26 31 | syl | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |