This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive fractions is distributive. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrnq | |- ( A .Q ( B +Q C ) ) = ( ( A .Q B ) +Q ( A .Q C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcompi | |- ( ( 1st ` A ) .N ( 1st ` B ) ) = ( ( 1st ` B ) .N ( 1st ` A ) ) |
|
| 2 | 1 | oveq1i | |- ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` B ) .N ( 1st ` A ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) |
| 3 | fvex | |- ( 1st ` B ) e. _V |
|
| 4 | fvex | |- ( 1st ` A ) e. _V |
|
| 5 | fvex | |- ( 2nd ` A ) e. _V |
|
| 6 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 7 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 8 | fvex | |- ( 2nd ` C ) e. _V |
|
| 9 | 3 4 5 6 7 8 | caov411 | |- ( ( ( 1st ` B ) .N ( 1st ` A ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 10 | 2 9 | eqtri | |- ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 11 | mulcompi | |- ( ( 1st ` A ) .N ( 1st ` C ) ) = ( ( 1st ` C ) .N ( 1st ` A ) ) |
|
| 12 | 11 | oveq1i | |- ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 13 | fvex | |- ( 1st ` C ) e. _V |
|
| 14 | fvex | |- ( 2nd ` B ) e. _V |
|
| 15 | 13 4 5 6 7 14 | caov411 | |- ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) |
| 16 | 12 15 | eqtri | |- ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) |
| 17 | 10 16 | oveq12i | |- ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 18 | distrpi | |- ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
|
| 19 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 1st ` A ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) |
|
| 20 | 17 18 19 | 3eqtr2i | |- ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) |
| 21 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) ) |
|
| 22 | 14 5 8 6 7 | caov12 | |- ( ( 2nd ` B ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 23 | 22 | oveq2i | |- ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 24 | 21 23 | eqtri | |- ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 25 | 20 24 | opeq12i | |- <. ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) >. = <. ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) >. |
| 26 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 27 | 26 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 28 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 29 | 27 28 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 30 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 31 | 27 30 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` A ) e. N. ) |
| 32 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 33 | 32 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 34 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 35 | 33 34 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` B ) e. N. ) |
| 36 | elpqn | |- ( C e. Q. -> C e. ( N. X. N. ) ) |
|
| 37 | 36 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 38 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 39 | 37 38 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 40 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 41 | 35 39 40 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 42 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 43 | 37 42 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 44 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 45 | 33 44 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 46 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
|
| 47 | 43 45 46 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 48 | addclpi | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
|
| 49 | 41 47 48 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 50 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) -> ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) e. N. ) |
|
| 51 | 31 49 50 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) e. N. ) |
| 52 | mulclpi | |- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 53 | 45 39 52 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 54 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) -> ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) e. N. ) |
|
| 55 | 29 53 54 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) e. N. ) |
| 56 | mulcanenq | |- ( ( ( 2nd ` A ) e. N. /\ ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) e. N. ) -> <. ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) >. ~Q <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
|
| 57 | 29 51 55 56 | syl3anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> <. ( ( 2nd ` A ) .N ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) >. ~Q <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 58 | 25 57 | eqbrtrid | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> <. ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) >. ~Q <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 59 | mulpipq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A .pQ B ) = <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
|
| 60 | 27 33 59 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ B ) = <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
| 61 | mulpipq2 | |- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
|
| 62 | 27 37 61 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 63 | 60 62 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) +pQ ( A .pQ C ) ) = ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) ) |
| 64 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 1st ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. ) |
|
| 65 | 31 35 64 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. ) |
| 66 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 67 | 29 45 66 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 68 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
|
| 69 | 31 43 68 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
| 70 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
|
| 71 | 29 39 70 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 72 | addpipq | |- ( ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) /\ ( ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) >. ) |
|
| 73 | 65 67 69 71 72 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) >. ) |
| 74 | 63 73 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) +pQ ( A .pQ C ) ) = <. ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) >. ) |
| 75 | relxp | |- Rel ( N. X. N. ) |
|
| 76 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 77 | 75 27 76 | sylancr | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 78 | addpipq2 | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
|
| 79 | 33 37 78 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 80 | 77 79 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ ( B +pQ C ) ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 81 | mulpipq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
|
| 82 | 31 29 49 53 81 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 83 | 80 82 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ ( B +pQ C ) ) = <. ( ( 1st ` A ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 84 | 58 74 83 | 3brtr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) +pQ ( A .pQ C ) ) ~Q ( A .pQ ( B +pQ C ) ) ) |
| 85 | mulpqf | |- .pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |
|
| 86 | 85 | fovcl | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A .pQ B ) e. ( N. X. N. ) ) |
| 87 | 27 33 86 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ B ) e. ( N. X. N. ) ) |
| 88 | 85 | fovcl | |- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) e. ( N. X. N. ) ) |
| 89 | 27 37 88 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ C ) e. ( N. X. N. ) ) |
| 90 | addpqf | |- +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |
|
| 91 | 90 | fovcl | |- ( ( ( A .pQ B ) e. ( N. X. N. ) /\ ( A .pQ C ) e. ( N. X. N. ) ) -> ( ( A .pQ B ) +pQ ( A .pQ C ) ) e. ( N. X. N. ) ) |
| 92 | 87 89 91 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) +pQ ( A .pQ C ) ) e. ( N. X. N. ) ) |
| 93 | 90 | fovcl | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) e. ( N. X. N. ) ) |
| 94 | 33 37 93 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +pQ C ) e. ( N. X. N. ) ) |
| 95 | 85 | fovcl | |- ( ( A e. ( N. X. N. ) /\ ( B +pQ C ) e. ( N. X. N. ) ) -> ( A .pQ ( B +pQ C ) ) e. ( N. X. N. ) ) |
| 96 | 27 94 95 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ ( B +pQ C ) ) e. ( N. X. N. ) ) |
| 97 | nqereq | |- ( ( ( ( A .pQ B ) +pQ ( A .pQ C ) ) e. ( N. X. N. ) /\ ( A .pQ ( B +pQ C ) ) e. ( N. X. N. ) ) -> ( ( ( A .pQ B ) +pQ ( A .pQ C ) ) ~Q ( A .pQ ( B +pQ C ) ) <-> ( /Q ` ( ( A .pQ B ) +pQ ( A .pQ C ) ) ) = ( /Q ` ( A .pQ ( B +pQ C ) ) ) ) ) |
|
| 98 | 92 96 97 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( A .pQ B ) +pQ ( A .pQ C ) ) ~Q ( A .pQ ( B +pQ C ) ) <-> ( /Q ` ( ( A .pQ B ) +pQ ( A .pQ C ) ) ) = ( /Q ` ( A .pQ ( B +pQ C ) ) ) ) ) |
| 99 | 84 98 | mpbid | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( /Q ` ( ( A .pQ B ) +pQ ( A .pQ C ) ) ) = ( /Q ` ( A .pQ ( B +pQ C ) ) ) ) |
| 100 | 99 | eqcomd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( /Q ` ( A .pQ ( B +pQ C ) ) ) = ( /Q ` ( ( A .pQ B ) +pQ ( A .pQ C ) ) ) ) |
| 101 | mulerpq | |- ( ( /Q ` A ) .Q ( /Q ` ( B +pQ C ) ) ) = ( /Q ` ( A .pQ ( B +pQ C ) ) ) |
|
| 102 | adderpq | |- ( ( /Q ` ( A .pQ B ) ) +Q ( /Q ` ( A .pQ C ) ) ) = ( /Q ` ( ( A .pQ B ) +pQ ( A .pQ C ) ) ) |
|
| 103 | 100 101 102 | 3eqtr4g | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( /Q ` A ) .Q ( /Q ` ( B +pQ C ) ) ) = ( ( /Q ` ( A .pQ B ) ) +Q ( /Q ` ( A .pQ C ) ) ) ) |
| 104 | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
|
| 105 | 104 | eqcomd | |- ( A e. Q. -> A = ( /Q ` A ) ) |
| 106 | 105 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = ( /Q ` A ) ) |
| 107 | addpqnq | |- ( ( B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
|
| 108 | 107 | 3adant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
| 109 | 106 108 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q ( B +Q C ) ) = ( ( /Q ` A ) .Q ( /Q ` ( B +pQ C ) ) ) ) |
| 110 | mulpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
|
| 111 | 110 | 3adant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
| 112 | mulpqnq | |- ( ( A e. Q. /\ C e. Q. ) -> ( A .Q C ) = ( /Q ` ( A .pQ C ) ) ) |
|
| 113 | 112 | 3adant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q C ) = ( /Q ` ( A .pQ C ) ) ) |
| 114 | 111 113 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .Q B ) +Q ( A .Q C ) ) = ( ( /Q ` ( A .pQ B ) ) +Q ( /Q ` ( A .pQ C ) ) ) ) |
| 115 | 103 109 114 | 3eqtr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q ( B +Q C ) ) = ( ( A .Q B ) +Q ( A .Q C ) ) ) |
| 116 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 117 | 116 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 118 | 0nnq | |- -. (/) e. Q. |
|
| 119 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 120 | 119 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 121 | 117 118 120 | ndmovdistr | |- ( -. ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q ( B +Q C ) ) = ( ( A .Q B ) +Q ( A .Q C ) ) ) |
| 122 | 115 121 | pm2.61i | |- ( A .Q ( B +Q C ) ) = ( ( A .Q B ) +Q ( A .Q C ) ) |