This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 21-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1de2ct.1 | |- B e. ~H |
|
| Assertion | h1de2ci | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2ct.1 | |- B e. ~H |
|
| 2 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 3 | occl | |- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
|
| 4 | 1 2 3 | mp2b | |- ( _|_ ` { B } ) e. CH |
| 5 | 4 | choccli | |- ( _|_ ` ( _|_ ` { B } ) ) e. CH |
| 6 | 5 | cheli | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> A e. ~H ) |
| 7 | hvmulcl | |- ( ( x e. CC /\ B e. ~H ) -> ( x .h B ) e. ~H ) |
|
| 8 | 1 7 | mpan2 | |- ( x e. CC -> ( x .h B ) e. ~H ) |
| 9 | eleq1 | |- ( A = ( x .h B ) -> ( A e. ~H <-> ( x .h B ) e. ~H ) ) |
|
| 10 | 8 9 | syl5ibrcom | |- ( x e. CC -> ( A = ( x .h B ) -> A e. ~H ) ) |
| 11 | 10 | rexlimiv | |- ( E. x e. CC A = ( x .h B ) -> A e. ~H ) |
| 12 | eleq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> if ( A e. ~H , A , 0h ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
|
| 13 | eqeq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A = ( x .h B ) <-> if ( A e. ~H , A , 0h ) = ( x .h B ) ) ) |
|
| 14 | 13 | rexbidv | |- ( A = if ( A e. ~H , A , 0h ) -> ( E. x e. CC A = ( x .h B ) <-> E. x e. CC if ( A e. ~H , A , 0h ) = ( x .h B ) ) ) |
| 15 | 12 14 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) <-> ( if ( A e. ~H , A , 0h ) e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC if ( A e. ~H , A , 0h ) = ( x .h B ) ) ) ) |
| 16 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 17 | 16 1 | h1de2ctlem | |- ( if ( A e. ~H , A , 0h ) e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC if ( A e. ~H , A , 0h ) = ( x .h B ) ) |
| 18 | 15 17 | dedth | |- ( A e. ~H -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) ) |
| 19 | 6 11 18 | pm5.21nii | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) |