This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsn0elch | |- { 0h } e. CH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | snssi | |- ( 0h e. ~H -> { 0h } C_ ~H ) |
|
| 3 | 1 2 | ax-mp | |- { 0h } C_ ~H |
| 4 | 1 | elexi | |- 0h e. _V |
| 5 | 4 | snid | |- 0h e. { 0h } |
| 6 | 3 5 | pm3.2i | |- ( { 0h } C_ ~H /\ 0h e. { 0h } ) |
| 7 | velsn | |- ( x e. { 0h } <-> x = 0h ) |
|
| 8 | velsn | |- ( y e. { 0h } <-> y = 0h ) |
|
| 9 | oveq12 | |- ( ( x = 0h /\ y = 0h ) -> ( x +h y ) = ( 0h +h 0h ) ) |
|
| 10 | 1 | hvaddlidi | |- ( 0h +h 0h ) = 0h |
| 11 | 9 10 | eqtrdi | |- ( ( x = 0h /\ y = 0h ) -> ( x +h y ) = 0h ) |
| 12 | ovex | |- ( x +h y ) e. _V |
|
| 13 | 12 | elsn | |- ( ( x +h y ) e. { 0h } <-> ( x +h y ) = 0h ) |
| 14 | 11 13 | sylibr | |- ( ( x = 0h /\ y = 0h ) -> ( x +h y ) e. { 0h } ) |
| 15 | 7 8 14 | syl2anb | |- ( ( x e. { 0h } /\ y e. { 0h } ) -> ( x +h y ) e. { 0h } ) |
| 16 | 15 | rgen2 | |- A. x e. { 0h } A. y e. { 0h } ( x +h y ) e. { 0h } |
| 17 | oveq2 | |- ( y = 0h -> ( x .h y ) = ( x .h 0h ) ) |
|
| 18 | hvmul0 | |- ( x e. CC -> ( x .h 0h ) = 0h ) |
|
| 19 | 17 18 | sylan9eqr | |- ( ( x e. CC /\ y = 0h ) -> ( x .h y ) = 0h ) |
| 20 | ovex | |- ( x .h y ) e. _V |
|
| 21 | 20 | elsn | |- ( ( x .h y ) e. { 0h } <-> ( x .h y ) = 0h ) |
| 22 | 19 21 | sylibr | |- ( ( x e. CC /\ y = 0h ) -> ( x .h y ) e. { 0h } ) |
| 23 | 8 22 | sylan2b | |- ( ( x e. CC /\ y e. { 0h } ) -> ( x .h y ) e. { 0h } ) |
| 24 | 23 | rgen2 | |- A. x e. CC A. y e. { 0h } ( x .h y ) e. { 0h } |
| 25 | 16 24 | pm3.2i | |- ( A. x e. { 0h } A. y e. { 0h } ( x +h y ) e. { 0h } /\ A. x e. CC A. y e. { 0h } ( x .h y ) e. { 0h } ) |
| 26 | issh2 | |- ( { 0h } e. SH <-> ( ( { 0h } C_ ~H /\ 0h e. { 0h } ) /\ ( A. x e. { 0h } A. y e. { 0h } ( x +h y ) e. { 0h } /\ A. x e. CC A. y e. { 0h } ( x .h y ) e. { 0h } ) ) ) |
|
| 27 | 6 25 26 | mpbir2an | |- { 0h } e. SH |
| 28 | 4 | fconst2 | |- ( f : NN --> { 0h } <-> f = ( NN X. { 0h } ) ) |
| 29 | hlim0 | |- ( NN X. { 0h } ) ~~>v 0h |
|
| 30 | breq1 | |- ( f = ( NN X. { 0h } ) -> ( f ~~>v 0h <-> ( NN X. { 0h } ) ~~>v 0h ) ) |
|
| 31 | 29 30 | mpbiri | |- ( f = ( NN X. { 0h } ) -> f ~~>v 0h ) |
| 32 | 28 31 | sylbi | |- ( f : NN --> { 0h } -> f ~~>v 0h ) |
| 33 | hlimuni | |- ( ( f ~~>v 0h /\ f ~~>v x ) -> 0h = x ) |
|
| 34 | 33 | eleq1d | |- ( ( f ~~>v 0h /\ f ~~>v x ) -> ( 0h e. { 0h } <-> x e. { 0h } ) ) |
| 35 | 32 34 | sylan | |- ( ( f : NN --> { 0h } /\ f ~~>v x ) -> ( 0h e. { 0h } <-> x e. { 0h } ) ) |
| 36 | 5 35 | mpbii | |- ( ( f : NN --> { 0h } /\ f ~~>v x ) -> x e. { 0h } ) |
| 37 | 36 | gen2 | |- A. f A. x ( ( f : NN --> { 0h } /\ f ~~>v x ) -> x e. { 0h } ) |
| 38 | isch2 | |- ( { 0h } e. CH <-> ( { 0h } e. SH /\ A. f A. x ( ( f : NN --> { 0h } /\ f ~~>v x ) -> x e. { 0h } ) ) ) |
|
| 39 | 27 37 38 | mpbir2an | |- { 0h } e. CH |