This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptscmfsupp0.d | |- ( ph -> D e. V ) |
|
| mptscmfsupp0.q | |- ( ph -> Q e. LMod ) |
||
| mptscmfsupp0.r | |- ( ph -> R = ( Scalar ` Q ) ) |
||
| mptscmfsupp0.k | |- K = ( Base ` Q ) |
||
| mptscmfsupp0.s | |- ( ( ph /\ k e. D ) -> S e. B ) |
||
| mptscmfsupp0.w | |- ( ( ph /\ k e. D ) -> W e. K ) |
||
| mptscmfsupp0.0 | |- .0. = ( 0g ` Q ) |
||
| mptscmfsupp0.z | |- Z = ( 0g ` R ) |
||
| mptscmfsupp0.m | |- .* = ( .s ` Q ) |
||
| mptscmfsupp0.f | |- ( ph -> ( k e. D |-> S ) finSupp Z ) |
||
| Assertion | mptscmfsupp0 | |- ( ph -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptscmfsupp0.d | |- ( ph -> D e. V ) |
|
| 2 | mptscmfsupp0.q | |- ( ph -> Q e. LMod ) |
|
| 3 | mptscmfsupp0.r | |- ( ph -> R = ( Scalar ` Q ) ) |
|
| 4 | mptscmfsupp0.k | |- K = ( Base ` Q ) |
|
| 5 | mptscmfsupp0.s | |- ( ( ph /\ k e. D ) -> S e. B ) |
|
| 6 | mptscmfsupp0.w | |- ( ( ph /\ k e. D ) -> W e. K ) |
|
| 7 | mptscmfsupp0.0 | |- .0. = ( 0g ` Q ) |
|
| 8 | mptscmfsupp0.z | |- Z = ( 0g ` R ) |
|
| 9 | mptscmfsupp0.m | |- .* = ( .s ` Q ) |
|
| 10 | mptscmfsupp0.f | |- ( ph -> ( k e. D |-> S ) finSupp Z ) |
|
| 11 | 1 | mptexd | |- ( ph -> ( k e. D |-> ( S .* W ) ) e. _V ) |
| 12 | funmpt | |- Fun ( k e. D |-> ( S .* W ) ) |
|
| 13 | 12 | a1i | |- ( ph -> Fun ( k e. D |-> ( S .* W ) ) ) |
| 14 | 7 | fvexi | |- .0. e. _V |
| 15 | 14 | a1i | |- ( ph -> .0. e. _V ) |
| 16 | 10 | fsuppimpd | |- ( ph -> ( ( k e. D |-> S ) supp Z ) e. Fin ) |
| 17 | simpr | |- ( ( ph /\ d e. D ) -> d e. D ) |
|
| 18 | 5 | ralrimiva | |- ( ph -> A. k e. D S e. B ) |
| 19 | 18 | adantr | |- ( ( ph /\ d e. D ) -> A. k e. D S e. B ) |
| 20 | rspcsbela | |- ( ( d e. D /\ A. k e. D S e. B ) -> [_ d / k ]_ S e. B ) |
|
| 21 | 17 19 20 | syl2anc | |- ( ( ph /\ d e. D ) -> [_ d / k ]_ S e. B ) |
| 22 | eqid | |- ( k e. D |-> S ) = ( k e. D |-> S ) |
|
| 23 | 22 | fvmpts | |- ( ( d e. D /\ [_ d / k ]_ S e. B ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) |
| 24 | 17 21 23 | syl2anc | |- ( ( ph /\ d e. D ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) |
| 25 | 24 | eqeq1d | |- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z <-> [_ d / k ]_ S = Z ) ) |
| 26 | oveq1 | |- ( [_ d / k ]_ S = Z -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = ( Z .* [_ d / k ]_ W ) ) |
|
| 27 | 3 | adantr | |- ( ( ph /\ d e. D ) -> R = ( Scalar ` Q ) ) |
| 28 | 27 | fveq2d | |- ( ( ph /\ d e. D ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` Q ) ) ) |
| 29 | 8 28 | eqtrid | |- ( ( ph /\ d e. D ) -> Z = ( 0g ` ( Scalar ` Q ) ) ) |
| 30 | 29 | oveq1d | |- ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) ) |
| 31 | 2 | adantr | |- ( ( ph /\ d e. D ) -> Q e. LMod ) |
| 32 | 6 | ralrimiva | |- ( ph -> A. k e. D W e. K ) |
| 33 | 32 | adantr | |- ( ( ph /\ d e. D ) -> A. k e. D W e. K ) |
| 34 | rspcsbela | |- ( ( d e. D /\ A. k e. D W e. K ) -> [_ d / k ]_ W e. K ) |
|
| 35 | 17 33 34 | syl2anc | |- ( ( ph /\ d e. D ) -> [_ d / k ]_ W e. K ) |
| 36 | eqid | |- ( Scalar ` Q ) = ( Scalar ` Q ) |
|
| 37 | eqid | |- ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) |
|
| 38 | 4 36 9 37 7 | lmod0vs | |- ( ( Q e. LMod /\ [_ d / k ]_ W e. K ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) |
| 39 | 31 35 38 | syl2anc | |- ( ( ph /\ d e. D ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) |
| 40 | 30 39 | eqtrd | |- ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = .0. ) |
| 41 | 26 40 | sylan9eqr | |- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) |
| 42 | csbov12g | |- ( d e. D -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
|
| 43 | 42 | adantl | |- ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
| 44 | ovex | |- ( [_ d / k ]_ S .* [_ d / k ]_ W ) e. _V |
|
| 45 | 43 44 | eqeltrdi | |- ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) e. _V ) |
| 46 | eqid | |- ( k e. D |-> ( S .* W ) ) = ( k e. D |-> ( S .* W ) ) |
|
| 47 | 46 | fvmpts | |- ( ( d e. D /\ [_ d / k ]_ ( S .* W ) e. _V ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) |
| 48 | 17 45 47 | syl2anc | |- ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) |
| 49 | 48 43 | eqtrd | |- ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
| 50 | 49 | eqeq1d | |- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) |
| 51 | 50 | adantr | |- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) |
| 52 | 41 51 | mpbird | |- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) |
| 53 | 52 | ex | |- ( ( ph /\ d e. D ) -> ( [_ d / k ]_ S = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) |
| 54 | 25 53 | sylbid | |- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) |
| 55 | 54 | necon3d | |- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. -> ( ( k e. D |-> S ) ` d ) =/= Z ) ) |
| 56 | 55 | ss2rabdv | |- ( ph -> { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } C_ { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
| 57 | ovex | |- ( S .* W ) e. _V |
|
| 58 | 57 | rgenw | |- A. k e. D ( S .* W ) e. _V |
| 59 | 46 | fnmpt | |- ( A. k e. D ( S .* W ) e. _V -> ( k e. D |-> ( S .* W ) ) Fn D ) |
| 60 | 58 59 | mp1i | |- ( ph -> ( k e. D |-> ( S .* W ) ) Fn D ) |
| 61 | suppvalfn | |- ( ( ( k e. D |-> ( S .* W ) ) Fn D /\ D e. V /\ .0. e. _V ) -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) |
|
| 62 | 60 1 15 61 | syl3anc | |- ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) |
| 63 | 22 | fnmpt | |- ( A. k e. D S e. B -> ( k e. D |-> S ) Fn D ) |
| 64 | 18 63 | syl | |- ( ph -> ( k e. D |-> S ) Fn D ) |
| 65 | 8 | fvexi | |- Z e. _V |
| 66 | 65 | a1i | |- ( ph -> Z e. _V ) |
| 67 | suppvalfn | |- ( ( ( k e. D |-> S ) Fn D /\ D e. V /\ Z e. _V ) -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
|
| 68 | 64 1 66 67 | syl3anc | |- ( ph -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
| 69 | 56 62 68 | 3sstr4d | |- ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) |
| 70 | suppssfifsupp | |- ( ( ( ( k e. D |-> ( S .* W ) ) e. _V /\ Fun ( k e. D |-> ( S .* W ) ) /\ .0. e. _V ) /\ ( ( ( k e. D |-> S ) supp Z ) e. Fin /\ ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) ) -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |
|
| 71 | 11 13 15 16 69 70 | syl32anc | |- ( ph -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |