This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | regsumfsum.1 | |- ( ph -> A e. Fin ) |
|
| regsumfsum.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| Assertion | regsumfsum | |- ( ph -> ( ( CCfld |`s RR ) gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regsumfsum.1 | |- ( ph -> A e. Fin ) |
|
| 2 | regsumfsum.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 4 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 5 | eqid | |- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
|
| 6 | cnfldex | |- CCfld e. _V |
|
| 7 | 6 | a1i | |- ( ph -> CCfld e. _V ) |
| 8 | ax-resscn | |- RR C_ CC |
|
| 9 | 8 | a1i | |- ( ph -> RR C_ CC ) |
| 10 | 2 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> RR ) |
| 11 | 0red | |- ( ph -> 0 e. RR ) |
|
| 12 | simpr | |- ( ( ph /\ x e. CC ) -> x e. CC ) |
|
| 13 | 12 | addlidd | |- ( ( ph /\ x e. CC ) -> ( 0 + x ) = x ) |
| 14 | 12 | addridd | |- ( ( ph /\ x e. CC ) -> ( x + 0 ) = x ) |
| 15 | 13 14 | jca | |- ( ( ph /\ x e. CC ) -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 16 | 3 4 5 7 1 9 10 11 15 | gsumress | |- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = ( ( CCfld |`s RR ) gsum ( k e. A |-> B ) ) ) |
| 17 | 2 | recnd | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 18 | 1 17 | gsumfsum | |- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
| 19 | 16 18 | eqtr3d | |- ( ph -> ( ( CCfld |`s RR ) gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |