This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| gsmsymgrfix.b | |- B = ( Base ` S ) |
||
| gsmsymgreq.z | |- Z = ( SymGrp ` M ) |
||
| gsmsymgreq.p | |- P = ( Base ` Z ) |
||
| gsmsymgreq.i | |- I = ( N i^i M ) |
||
| Assertion | fvcosymgeq | |- ( ( G e. B /\ K e. P ) -> ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| 2 | gsmsymgrfix.b | |- B = ( Base ` S ) |
|
| 3 | gsmsymgreq.z | |- Z = ( SymGrp ` M ) |
|
| 4 | gsmsymgreq.p | |- P = ( Base ` Z ) |
|
| 5 | gsmsymgreq.i | |- I = ( N i^i M ) |
|
| 6 | 1 2 | symgbasf | |- ( G e. B -> G : N --> N ) |
| 7 | 6 | ffnd | |- ( G e. B -> G Fn N ) |
| 8 | 3 4 | symgbasf | |- ( K e. P -> K : M --> M ) |
| 9 | 8 | ffnd | |- ( K e. P -> K Fn M ) |
| 10 | 7 9 | anim12i | |- ( ( G e. B /\ K e. P ) -> ( G Fn N /\ K Fn M ) ) |
| 11 | 10 | adantr | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G Fn N /\ K Fn M ) ) |
| 12 | 5 | eleq2i | |- ( X e. I <-> X e. ( N i^i M ) ) |
| 13 | 12 | biimpi | |- ( X e. I -> X e. ( N i^i M ) ) |
| 14 | 13 | 3ad2ant1 | |- ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> X e. ( N i^i M ) ) |
| 15 | 14 | adantl | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> X e. ( N i^i M ) ) |
| 16 | simpr2 | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G ` X ) = ( K ` X ) ) |
|
| 17 | 1 2 | symgbasf1o | |- ( G e. B -> G : N -1-1-onto-> N ) |
| 18 | dff1o5 | |- ( G : N -1-1-onto-> N <-> ( G : N -1-1-> N /\ ran G = N ) ) |
|
| 19 | eqcom | |- ( ran G = N <-> N = ran G ) |
|
| 20 | 19 | biimpi | |- ( ran G = N -> N = ran G ) |
| 21 | 18 20 | simplbiim | |- ( G : N -1-1-onto-> N -> N = ran G ) |
| 22 | 17 21 | syl | |- ( G e. B -> N = ran G ) |
| 23 | 3 4 | symgbasf1o | |- ( K e. P -> K : M -1-1-onto-> M ) |
| 24 | dff1o5 | |- ( K : M -1-1-onto-> M <-> ( K : M -1-1-> M /\ ran K = M ) ) |
|
| 25 | eqcom | |- ( ran K = M <-> M = ran K ) |
|
| 26 | 25 | biimpi | |- ( ran K = M -> M = ran K ) |
| 27 | 24 26 | simplbiim | |- ( K : M -1-1-onto-> M -> M = ran K ) |
| 28 | 23 27 | syl | |- ( K e. P -> M = ran K ) |
| 29 | 22 28 | ineqan12d | |- ( ( G e. B /\ K e. P ) -> ( N i^i M ) = ( ran G i^i ran K ) ) |
| 30 | 5 29 | eqtrid | |- ( ( G e. B /\ K e. P ) -> I = ( ran G i^i ran K ) ) |
| 31 | 30 | raleqdv | |- ( ( G e. B /\ K e. P ) -> ( A. n e. I ( F ` n ) = ( H ` n ) <-> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
| 32 | 31 | biimpcd | |- ( A. n e. I ( F ` n ) = ( H ` n ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
| 33 | 32 | 3ad2ant3 | |- ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
| 34 | 33 | impcom | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) |
| 35 | 15 16 34 | 3jca | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) |
| 36 | fvcofneq | |- ( ( G Fn N /\ K Fn M ) -> ( ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |
|
| 37 | 11 35 36 | sylc | |- ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) |
| 38 | 37 | ex | |- ( ( G e. B /\ K e. P ) -> ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |