This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for gsmsymgrfix . (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| gsmsymgrfix.b | |- B = ( Base ` S ) |
||
| Assertion | gsmsymgrfixlem1 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | |- S = ( SymGrp ` N ) |
|
| 2 | gsmsymgrfix.b | |- B = ( Base ` S ) |
|
| 3 | lencl | |- ( W e. Word B -> ( # ` W ) e. NN0 ) |
|
| 4 | elnn0uz | |- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
|
| 5 | 3 4 | sylib | |- ( W e. Word B -> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
| 6 | 5 | adantr | |- ( ( W e. Word B /\ P e. B ) -> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
| 8 | fzosplitsn | |- ( ( # ` W ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( # ` W ) + 1 ) ) = ( ( 0 ..^ ( # ` W ) ) u. { ( # ` W ) } ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( 0 ..^ ( ( # ` W ) + 1 ) ) = ( ( 0 ..^ ( # ` W ) ) u. { ( # ` W ) } ) ) |
| 10 | 9 | raleqdv | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> A. i e. ( ( 0 ..^ ( # ` W ) ) u. { ( # ` W ) } ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) |
| 11 | 3 | adantr | |- ( ( W e. Word B /\ P e. B ) -> ( # ` W ) e. NN0 ) |
| 12 | 11 | 3ad2ant1 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( # ` W ) e. NN0 ) |
| 13 | fveq2 | |- ( i = ( # ` W ) -> ( ( W ++ <" P "> ) ` i ) = ( ( W ++ <" P "> ) ` ( # ` W ) ) ) |
|
| 14 | 13 | fveq1d | |- ( i = ( # ` W ) -> ( ( ( W ++ <" P "> ) ` i ) ` K ) = ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) ) |
| 15 | 14 | eqeq1d | |- ( i = ( # ` W ) -> ( ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K ) ) |
| 16 | 15 | ralunsn | |- ( ( # ` W ) e. NN0 -> ( A. i e. ( ( 0 ..^ ( # ` W ) ) u. { ( # ` W ) } ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K /\ ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K ) ) ) |
| 17 | 12 16 | syl | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( ( 0 ..^ ( # ` W ) ) u. { ( # ` W ) } ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K /\ ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K ) ) ) |
| 18 | 10 17 | bitrd | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K /\ ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K ) ) ) |
| 19 | eqidd | |- ( ( W e. Word B /\ P e. B ) -> ( # ` W ) = ( # ` W ) ) |
|
| 20 | ccats1val2 | |- ( ( W e. Word B /\ P e. B /\ ( # ` W ) = ( # ` W ) ) -> ( ( W ++ <" P "> ) ` ( # ` W ) ) = P ) |
|
| 21 | 20 | fveq1d | |- ( ( W e. Word B /\ P e. B /\ ( # ` W ) = ( # ` W ) ) -> ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = ( P ` K ) ) |
| 22 | 21 | eqeq1d | |- ( ( W e. Word B /\ P e. B /\ ( # ` W ) = ( # ` W ) ) -> ( ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K <-> ( P ` K ) = K ) ) |
| 23 | 19 22 | mpd3an3 | |- ( ( W e. Word B /\ P e. B ) -> ( ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K <-> ( P ` K ) = K ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K <-> ( P ` K ) = K ) ) |
| 25 | simprl | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> N e. Fin ) |
|
| 26 | simpll | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> W e. Word B ) |
|
| 27 | simplr | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> P e. B ) |
|
| 28 | 1 2 | gsumccatsymgsn | |- ( ( N e. Fin /\ W e. Word B /\ P e. B ) -> ( S gsum ( W ++ <" P "> ) ) = ( ( S gsum W ) o. P ) ) |
| 29 | 28 | fveq1d | |- ( ( N e. Fin /\ W e. Word B /\ P e. B ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = ( ( ( S gsum W ) o. P ) ` K ) ) |
| 30 | 25 26 27 29 | syl3anc | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = ( ( ( S gsum W ) o. P ) ` K ) ) |
| 31 | 30 | 3adant3 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = ( ( ( S gsum W ) o. P ) ` K ) ) |
| 32 | 31 | adantr | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = ( ( ( S gsum W ) o. P ) ` K ) ) |
| 33 | 1 2 | symgbasf | |- ( P e. B -> P : N --> N ) |
| 34 | 33 | ffnd | |- ( P e. B -> P Fn N ) |
| 35 | 34 | adantl | |- ( ( W e. Word B /\ P e. B ) -> P Fn N ) |
| 36 | simpr | |- ( ( N e. Fin /\ K e. N ) -> K e. N ) |
|
| 37 | fvco2 | |- ( ( P Fn N /\ K e. N ) -> ( ( ( S gsum W ) o. P ) ` K ) = ( ( S gsum W ) ` ( P ` K ) ) ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> ( ( ( S gsum W ) o. P ) ` K ) = ( ( S gsum W ) ` ( P ` K ) ) ) |
| 39 | 38 | 3adant3 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( ( S gsum W ) o. P ) ` K ) = ( ( S gsum W ) ` ( P ` K ) ) ) |
| 40 | 39 | adantr | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( ( S gsum W ) o. P ) ` K ) = ( ( S gsum W ) ` ( P ` K ) ) ) |
| 41 | fveq2 | |- ( ( P ` K ) = K -> ( ( S gsum W ) ` ( P ` K ) ) = ( ( S gsum W ) ` K ) ) |
|
| 42 | 41 | ad2antrl | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( S gsum W ) ` ( P ` K ) ) = ( ( S gsum W ) ` K ) ) |
| 43 | ccats1val1 | |- ( ( W e. Word B /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" P "> ) ` i ) = ( W ` i ) ) |
|
| 44 | 43 | ad4ant14 | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" P "> ) ` i ) = ( W ` i ) ) |
| 45 | 44 | fveq1d | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W ++ <" P "> ) ` i ) ` K ) = ( ( W ` i ) ` K ) ) |
| 46 | 45 | eqeq1d | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> ( ( W ` i ) ` K ) = K ) ) |
| 47 | 46 | ralbidva | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K ) ) |
| 48 | 47 | biimpd | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K ) ) |
| 49 | 48 | adantld | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) ) -> ( ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K ) ) |
| 50 | 49 | 3adant3 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K ) ) |
| 51 | simp3 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) |
|
| 52 | 50 51 | syld | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) -> ( ( S gsum W ) ` K ) = K ) ) |
| 53 | 52 | imp | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( S gsum W ) ` K ) = K ) |
| 54 | 42 53 | eqtrd | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( S gsum W ) ` ( P ` K ) ) = K ) |
| 55 | 32 40 54 | 3eqtrd | |- ( ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) /\ ( ( P ` K ) = K /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K ) ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) |
| 56 | 55 | exp32 | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( P ` K ) = K -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) ) ) |
| 57 | 24 56 | sylbid | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) ) ) |
| 58 | 57 | impcomd | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K /\ ( ( ( W ++ <" P "> ) ` ( # ` W ) ) ` K ) = K ) -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) ) |
| 59 | 18 58 | sylbid | |- ( ( ( W e. Word B /\ P e. B ) /\ ( N e. Fin /\ K e. N ) /\ ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( W ` i ) ` K ) = K -> ( ( S gsum W ) ` K ) = K ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ( ( ( W ++ <" P "> ) ` i ) ` K ) = K -> ( ( S gsum ( W ++ <" P "> ) ) ` K ) = K ) ) |