This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoinveu.1 | |- X = ran G |
|
| grpoinveu.2 | |- U = ( GId ` G ) |
||
| Assertion | grpoinveu | |- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | |- X = ran G |
|
| 2 | grpoinveu.2 | |- U = ( GId ` G ) |
|
| 3 | 1 2 | grpoidinv2 | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 4 | simpl | |- ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
|
| 5 | 4 | reximi | |- ( E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) -> E. y e. X ( y G A ) = U ) |
| 6 | 5 | adantl | |- ( ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> E. y e. X ( y G A ) = U ) |
| 7 | 3 6 | syl | |- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( y G A ) = U ) |
| 8 | eqtr3 | |- ( ( ( y G A ) = U /\ ( z G A ) = U ) -> ( y G A ) = ( z G A ) ) |
|
| 9 | 1 | grporcan | |- ( ( G e. GrpOp /\ ( y e. X /\ z e. X /\ A e. X ) ) -> ( ( y G A ) = ( z G A ) <-> y = z ) ) |
| 10 | 8 9 | imbitrid | |- ( ( G e. GrpOp /\ ( y e. X /\ z e. X /\ A e. X ) ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
| 11 | 10 | 3exp2 | |- ( G e. GrpOp -> ( y e. X -> ( z e. X -> ( A e. X -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) ) ) ) |
| 12 | 11 | com24 | |- ( G e. GrpOp -> ( A e. X -> ( z e. X -> ( y e. X -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) ) ) ) |
| 13 | 12 | imp41 | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ z e. X ) /\ y e. X ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
| 14 | 13 | an32s | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ z e. X ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
| 15 | 14 | expd | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ z e. X ) -> ( ( y G A ) = U -> ( ( z G A ) = U -> y = z ) ) ) |
| 16 | 15 | ralrimdva | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U -> A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
| 17 | 16 | ancld | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U -> ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) ) |
| 18 | 17 | reximdva | |- ( ( G e. GrpOp /\ A e. X ) -> ( E. y e. X ( y G A ) = U -> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) ) |
| 19 | 7 18 | mpd | |- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
| 20 | oveq1 | |- ( y = z -> ( y G A ) = ( z G A ) ) |
|
| 21 | 20 | eqeq1d | |- ( y = z -> ( ( y G A ) = U <-> ( z G A ) = U ) ) |
| 22 | 21 | reu8 | |- ( E! y e. X ( y G A ) = U <-> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
| 23 | 19 22 | sylibr | |- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) |