This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grprcan.1 | |- X = ran G |
|
| Assertion | grporcan | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.1 | |- X = ran G |
|
| 2 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 3 | 1 2 | grpoidinv2 | |- ( ( G e. GrpOp /\ C e. X ) -> ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) ) |
| 4 | simpr | |- ( ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> ( C G y ) = ( GId ` G ) ) |
|
| 5 | 4 | reximi | |- ( E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
| 6 | 5 | adantl | |- ( ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
| 7 | 3 6 | syl | |- ( ( G e. GrpOp /\ C e. X ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
| 8 | 7 | ad2ant2rl | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
| 9 | oveq1 | |- ( ( A G C ) = ( B G C ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) |
|
| 10 | 9 | ad2antll | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) |
| 11 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ y e. X ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
| 12 | 11 | 3anassrs | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
| 13 | 12 | adantlrl | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
| 14 | 13 | adantrr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
| 15 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( B e. X /\ C e. X /\ y e. X ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
| 16 | 15 | 3exp2 | |- ( G e. GrpOp -> ( B e. X -> ( C e. X -> ( y e. X -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) ) ) ) |
| 17 | 16 | imp42 | |- ( ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
| 18 | 17 | adantllr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
| 19 | 18 | adantrr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
| 20 | 10 14 19 | 3eqtr3d | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) |
| 21 | 20 | adantrrl | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) |
| 22 | oveq2 | |- ( ( C G y ) = ( GId ` G ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
|
| 23 | 22 | ad2antrl | |- ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
| 24 | 23 | adantl | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
| 25 | oveq2 | |- ( ( C G y ) = ( GId ` G ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
|
| 26 | 25 | ad2antrl | |- ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
| 27 | 26 | adantl | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
| 28 | 21 24 27 | 3eqtr3d | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = ( B G ( GId ` G ) ) ) |
| 29 | 1 2 | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
| 30 | 29 | ad2antrr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = A ) |
| 31 | 1 2 | grporid | |- ( ( G e. GrpOp /\ B e. X ) -> ( B G ( GId ` G ) ) = B ) |
| 32 | 31 | ad2ant2r | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( B G ( GId ` G ) ) = B ) |
| 33 | 32 | adantr | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( GId ` G ) ) = B ) |
| 34 | 28 30 33 | 3eqtr3d | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> A = B ) |
| 35 | 34 | exp45 | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( y e. X -> ( ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) ) |
| 36 | 35 | rexlimdv | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( E. y e. X ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) |
| 37 | 8 36 | mpd | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) |
| 38 | oveq1 | |- ( A = B -> ( A G C ) = ( B G C ) ) |
|
| 39 | 37 38 | impbid1 | |- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |
| 40 | 39 | exp43 | |- ( G e. GrpOp -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A G C ) = ( B G C ) <-> A = B ) ) ) ) ) |
| 41 | 40 | 3imp2 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |