This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoidval.1 | |- X = ran G |
|
| grpoidval.2 | |- U = ( GId ` G ) |
||
| Assertion | grpoidinv2 | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.1 | |- X = ran G |
|
| 2 | grpoidval.2 | |- U = ( GId ` G ) |
|
| 3 | 1 2 | grpoidval | |- ( G e. GrpOp -> U = ( iota_ u e. X A. x e. X ( u G x ) = x ) ) |
| 4 | 1 | grpoideu | |- ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x ) |
| 5 | riotacl2 | |- ( E! u e. X A. x e. X ( u G x ) = x -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) |
|
| 6 | 4 5 | syl | |- ( G e. GrpOp -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) |
| 7 | 3 6 | eqeltrd | |- ( G e. GrpOp -> U e. { u e. X | A. x e. X ( u G x ) = x } ) |
| 8 | simpll | |- ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> ( u G x ) = x ) |
|
| 9 | 8 | ralimi | |- ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) |
| 10 | 9 | rgenw | |- A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) |
| 11 | 10 | a1i | |- ( G e. GrpOp -> A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) ) |
| 12 | 1 | grpoidinv | |- ( G e. GrpOp -> E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) |
| 13 | 11 12 4 | 3jca | |- ( G e. GrpOp -> ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) ) |
| 14 | reupick2 | |- ( ( ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) |
|
| 15 | 13 14 | sylan | |- ( ( G e. GrpOp /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) |
| 16 | 15 | rabbidva | |- ( G e. GrpOp -> { u e. X | A. x e. X ( u G x ) = x } = { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) |
| 17 | 7 16 | eleqtrd | |- ( G e. GrpOp -> U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) |
| 18 | oveq1 | |- ( u = U -> ( u G x ) = ( U G x ) ) |
|
| 19 | 18 | eqeq1d | |- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
| 20 | oveq2 | |- ( u = U -> ( x G u ) = ( x G U ) ) |
|
| 21 | 20 | eqeq1d | |- ( u = U -> ( ( x G u ) = x <-> ( x G U ) = x ) ) |
| 22 | 19 21 | anbi12d | |- ( u = U -> ( ( ( u G x ) = x /\ ( x G u ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 23 | eqeq2 | |- ( u = U -> ( ( y G x ) = u <-> ( y G x ) = U ) ) |
|
| 24 | eqeq2 | |- ( u = U -> ( ( x G y ) = u <-> ( x G y ) = U ) ) |
|
| 25 | 23 24 | anbi12d | |- ( u = U -> ( ( ( y G x ) = u /\ ( x G y ) = u ) <-> ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
| 26 | 25 | rexbidv | |- ( u = U -> ( E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) <-> E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
| 27 | 22 26 | anbi12d | |- ( u = U -> ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
| 28 | 27 | ralbidv | |- ( u = U -> ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
| 29 | 28 | elrab | |- ( U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } <-> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
| 30 | 17 29 | sylib | |- ( G e. GrpOp -> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
| 31 | 30 | simprd | |- ( G e. GrpOp -> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
| 32 | oveq2 | |- ( x = A -> ( U G x ) = ( U G A ) ) |
|
| 33 | id | |- ( x = A -> x = A ) |
|
| 34 | 32 33 | eqeq12d | |- ( x = A -> ( ( U G x ) = x <-> ( U G A ) = A ) ) |
| 35 | oveq1 | |- ( x = A -> ( x G U ) = ( A G U ) ) |
|
| 36 | 35 33 | eqeq12d | |- ( x = A -> ( ( x G U ) = x <-> ( A G U ) = A ) ) |
| 37 | 34 36 | anbi12d | |- ( x = A -> ( ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( ( U G A ) = A /\ ( A G U ) = A ) ) ) |
| 38 | oveq2 | |- ( x = A -> ( y G x ) = ( y G A ) ) |
|
| 39 | 38 | eqeq1d | |- ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) |
| 40 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 41 | 40 | eqeq1d | |- ( x = A -> ( ( x G y ) = U <-> ( A G y ) = U ) ) |
| 42 | 39 41 | anbi12d | |- ( x = A -> ( ( ( y G x ) = U /\ ( x G y ) = U ) <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 43 | 42 | rexbidv | |- ( x = A -> ( E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) <-> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 44 | 37 43 | anbi12d | |- ( x = A -> ( ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) <-> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) ) |
| 45 | 44 | rspccva | |- ( ( A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 46 | 31 45 | sylan | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |