This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpoinveu.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| Assertion | grpoinveu | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoinveu.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 4 | simpl | ⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 6 | 5 | adantl | ⊢ ( ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 7 | 3 6 | syl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 8 | eqtr3 | ⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ) | |
| 9 | 1 | grporcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ↔ 𝑦 = 𝑧 ) ) |
| 10 | 8 9 | imbitrid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
| 11 | 10 | 3exp2 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 → ( 𝑧 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) ) ) ) |
| 12 | 11 | com24 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝑧 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) ) ) ) |
| 13 | 12 | imp41 | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
| 14 | 13 | an32s | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
| 15 | 14 | expd | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
| 16 | 15 | ralrimdva | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
| 17 | 16 | ancld | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) ) |
| 18 | 17 | reximdva | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) ) |
| 19 | 7 18 | mpd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) ) |
| 22 | 21 | reu8 | ⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
| 23 | 19 22 | sylibr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |