This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgric2.v | |- V = ( Vtx ` A ) |
|
| dfgric2.w | |- W = ( Vtx ` B ) |
||
| dfgric2.i | |- I = ( iEdg ` A ) |
||
| dfgric2.j | |- J = ( iEdg ` B ) |
||
| Assertion | dfgric2 | |- ( ( A e. X /\ B e. Y ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgric2.v | |- V = ( Vtx ` A ) |
|
| 2 | dfgric2.w | |- W = ( Vtx ` B ) |
|
| 3 | dfgric2.i | |- I = ( iEdg ` A ) |
|
| 4 | dfgric2.j | |- J = ( iEdg ` B ) |
|
| 5 | brgric | |- ( A ~=gr B <-> ( A GraphIso B ) =/= (/) ) |
|
| 6 | n0 | |- ( ( A GraphIso B ) =/= (/) <-> E. f f e. ( A GraphIso B ) ) |
|
| 7 | 5 6 | bitri | |- ( A ~=gr B <-> E. f f e. ( A GraphIso B ) ) |
| 8 | vex | |- f e. _V |
|
| 9 | 1 2 3 4 | isgrim | |- ( ( A e. X /\ B e. Y /\ f e. _V ) -> ( f e. ( A GraphIso B ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) ) ) ) ) |
| 10 | eqcom | |- ( ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) <-> ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) |
|
| 11 | 10 | ralbii | |- ( A. i e. dom I ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) <-> A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) |
| 12 | 11 | anbi2i | |- ( ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) ) <-> ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
| 13 | 12 | exbii | |- ( E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) ) <-> E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
| 14 | 13 | anbi2i | |- ( ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( g ` i ) ) = ( f " ( I ` i ) ) ) ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
| 15 | 9 14 | bitrdi | |- ( ( A e. X /\ B e. Y /\ f e. _V ) -> ( f e. ( A GraphIso B ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 16 | 8 15 | mp3an3 | |- ( ( A e. X /\ B e. Y ) -> ( f e. ( A GraphIso B ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 17 | 16 | exbidv | |- ( ( A e. X /\ B e. Y ) -> ( E. f f e. ( A GraphIso B ) <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 18 | 7 17 | bitrid | |- ( ( A e. X /\ B e. Y ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |