This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcocnv2 | |- ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun | |- ( Fun F <-> ( Rel F /\ ( F o. `' F ) C_ _I ) ) |
|
| 2 | 1 | simprbi | |- ( Fun F -> ( F o. `' F ) C_ _I ) |
| 3 | iss | |- ( ( F o. `' F ) C_ _I <-> ( F o. `' F ) = ( _I |` dom ( F o. `' F ) ) ) |
|
| 4 | dfdm4 | |- dom F = ran `' F |
|
| 5 | dmcoeq | |- ( dom F = ran `' F -> dom ( F o. `' F ) = dom `' F ) |
|
| 6 | 4 5 | ax-mp | |- dom ( F o. `' F ) = dom `' F |
| 7 | df-rn | |- ran F = dom `' F |
|
| 8 | 6 7 | eqtr4i | |- dom ( F o. `' F ) = ran F |
| 9 | 8 | reseq2i | |- ( _I |` dom ( F o. `' F ) ) = ( _I |` ran F ) |
| 10 | 9 | eqeq2i | |- ( ( F o. `' F ) = ( _I |` dom ( F o. `' F ) ) <-> ( F o. `' F ) = ( _I |` ran F ) ) |
| 11 | 3 10 | bitri | |- ( ( F o. `' F ) C_ _I <-> ( F o. `' F ) = ( _I |` ran F ) ) |
| 12 | 2 11 | sylib | |- ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) ) |