This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonan0 | |- ( ( A |g B ) e. ( Fmla ` N ) -> N =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 | |- 1o =/= (/) |
|
| 2 | 1 | neii | |- -. 1o = (/) |
| 3 | 2 | intnanr | |- -. ( 1o = (/) /\ <. A , B >. = <. i , j >. ) |
| 4 | 1oex | |- 1o e. _V |
|
| 5 | opex | |- <. A , B >. e. _V |
|
| 6 | 4 5 | opth | |- ( <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. <-> ( 1o = (/) /\ <. A , B >. = <. i , j >. ) ) |
| 7 | 3 6 | mtbir | |- -. <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. |
| 8 | goel | |- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
|
| 9 | 8 | eqeq2d | |- ( ( i e. _om /\ j e. _om ) -> ( <. 1o , <. A , B >. >. = ( i e.g j ) <-> <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. ) ) |
| 10 | 7 9 | mtbiri | |- ( ( i e. _om /\ j e. _om ) -> -. <. 1o , <. A , B >. >. = ( i e.g j ) ) |
| 11 | 10 | rgen2 | |- A. i e. _om A. j e. _om -. <. 1o , <. A , B >. >. = ( i e.g j ) |
| 12 | ralnex2 | |- ( A. i e. _om A. j e. _om -. <. 1o , <. A , B >. >. = ( i e.g j ) <-> -. E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) |
|
| 13 | 11 12 | mpbi | |- -. E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) |
| 14 | 13 | intnan | |- -. ( <. 1o , <. A , B >. >. e. _V /\ E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) |
| 15 | eqeq1 | |- ( x = <. 1o , <. A , B >. >. -> ( x = ( i e.g j ) <-> <. 1o , <. A , B >. >. = ( i e.g j ) ) ) |
|
| 16 | 15 | 2rexbidv | |- ( x = <. 1o , <. A , B >. >. -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) ) |
| 17 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
|
| 18 | 16 17 | elrab2 | |- ( <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) <-> ( <. 1o , <. A , B >. >. e. _V /\ E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) ) |
| 19 | 14 18 | mtbir | |- -. <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) |
| 20 | gonafv | |- ( ( A e. _V /\ B e. _V ) -> ( A |g B ) = <. 1o , <. A , B >. >. ) |
|
| 21 | 20 | eleq1d | |- ( ( A e. _V /\ B e. _V ) -> ( ( A |g B ) e. ( Fmla ` (/) ) <-> <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) ) ) |
| 22 | 19 21 | mtbiri | |- ( ( A e. _V /\ B e. _V ) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) |
| 23 | eqid | |- ( x e. ( _V X. _V ) |-> <. 1o , x >. ) = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
|
| 24 | 23 | dmmptss | |- dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) C_ ( _V X. _V ) |
| 25 | relxp | |- Rel ( _V X. _V ) |
|
| 26 | relss | |- ( dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) C_ ( _V X. _V ) -> ( Rel ( _V X. _V ) -> Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) ) ) |
|
| 27 | 24 25 26 | mp2 | |- Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
| 28 | df-gona | |- |g = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
|
| 29 | 28 | dmeqi | |- dom |g = dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
| 30 | 29 | releqi | |- ( Rel dom |g <-> Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) ) |
| 31 | 27 30 | mpbir | |- Rel dom |g |
| 32 | 31 | ovprc | |- ( -. ( A e. _V /\ B e. _V ) -> ( A |g B ) = (/) ) |
| 33 | peano1 | |- (/) e. _om |
|
| 34 | fmlaomn0 | |- ( (/) e. _om -> (/) e/ ( Fmla ` (/) ) ) |
|
| 35 | 33 34 | ax-mp | |- (/) e/ ( Fmla ` (/) ) |
| 36 | 35 | neli | |- -. (/) e. ( Fmla ` (/) ) |
| 37 | eleq1 | |- ( ( A |g B ) = (/) -> ( ( A |g B ) e. ( Fmla ` (/) ) <-> (/) e. ( Fmla ` (/) ) ) ) |
|
| 38 | 36 37 | mtbiri | |- ( ( A |g B ) = (/) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) |
| 39 | 32 38 | syl | |- ( -. ( A e. _V /\ B e. _V ) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) |
| 40 | 22 39 | pm2.61i | |- -. ( A |g B ) e. ( Fmla ` (/) ) |
| 41 | fveq2 | |- ( N = (/) -> ( Fmla ` N ) = ( Fmla ` (/) ) ) |
|
| 42 | 41 | eleq2d | |- ( N = (/) -> ( ( A |g B ) e. ( Fmla ` N ) <-> ( A |g B ) e. ( Fmla ` (/) ) ) ) |
| 43 | 40 42 | mtbiri | |- ( N = (/) -> -. ( A |g B ) e. ( Fmla ` N ) ) |
| 44 | 43 | necon2ai | |- ( ( A |g B ) e. ( Fmla ` N ) -> N =/= (/) ) |