This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gonar (induction step). (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonarlem | |- ( N e. _om -> ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( N e. _om -> suc N e. _om ) |
|
| 2 | ovexd | |- ( N e. _om -> ( a |g b ) e. _V ) |
|
| 3 | isfmlasuc | |- ( ( suc N e. _om /\ ( a |g b ) e. _V ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( N e. _om -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 5 | 4 | adantr | |- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 6 | fmlasssuc | |- ( suc N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
|
| 7 | 1 6 | syl | |- ( N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
| 8 | 7 | sseld | |- ( N e. _om -> ( a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 9 | 7 | sseld | |- ( N e. _om -> ( b e. ( Fmla ` suc N ) -> b e. ( Fmla ` suc suc N ) ) ) |
| 10 | 8 9 | anim12d | |- ( N e. _om -> ( ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 11 | 10 | com12 | |- ( ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 12 | 11 | imim2i | |- ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 13 | 12 | com23 | |- ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( N e. _om -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 14 | 13 | impcom | |- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 15 | gonafv | |- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
|
| 16 | 15 | el2v | |- ( a |g b ) = <. 1o , <. a , b >. >. |
| 17 | 16 | a1i | |- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 18 | gonafv | |- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( u |g v ) = <. 1o , <. u , v >. >. ) |
|
| 19 | 17 18 | eqeq12d | |- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. ) ) |
| 20 | 1oex | |- 1o e. _V |
|
| 21 | opex | |- <. a , b >. e. _V |
|
| 22 | 20 21 | opth | |- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) |
| 23 | 19 22 | bitrdi | |- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) ) |
| 24 | 23 | adantll | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) ) |
| 25 | vex | |- a e. _V |
|
| 26 | vex | |- b e. _V |
|
| 27 | 25 26 | opth | |- ( <. a , b >. = <. u , v >. <-> ( a = u /\ b = v ) ) |
| 28 | eleq1w | |- ( u = a -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
|
| 29 | 28 | equcoms | |- ( a = u -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
| 30 | eleq1w | |- ( v = b -> ( v e. ( Fmla ` suc N ) <-> b e. ( Fmla ` suc N ) ) ) |
|
| 31 | 30 | equcoms | |- ( b = v -> ( v e. ( Fmla ` suc N ) <-> b e. ( Fmla ` suc N ) ) ) |
| 32 | 29 31 | bi2anan9 | |- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) <-> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) |
| 33 | 32 11 | biimtrdi | |- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 34 | 27 33 | sylbi | |- ( <. a , b >. = <. u , v >. -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 35 | 34 | adantl | |- ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 36 | 35 | com13 | |- ( N e. _om -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 37 | 36 | impl | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 38 | 24 37 | sylbid | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 39 | 38 | rexlimdva | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 40 | gonanegoal | |- ( a |g b ) =/= A.g i u |
|
| 41 | eqneqall | |- ( ( a |g b ) = A.g i u -> ( ( a |g b ) =/= A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
|
| 42 | 40 41 | mpi | |- ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) |
| 43 | 42 | a1i | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ i e. _om ) -> ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 44 | 43 | rexlimdva | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. i e. _om ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 45 | 39 44 | jaod | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 46 | 45 | rexlimdva | |- ( N e. _om -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 47 | 46 | adantr | |- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 48 | 14 47 | jaod | |- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 49 | 5 48 | sylbid | |- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 50 | 49 | ex | |- ( N e. _om -> ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |