This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for goalr (induction step). (Contributed by AV, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goalrlem | |- ( N e. _om -> ( ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) -> ( A.g i a e. ( Fmla ` suc suc N ) -> a e. ( Fmla ` suc suc N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( N e. _om -> suc N e. _om ) |
|
| 2 | df-goal | |- A.g i a = <. 2o , <. i , a >. >. |
|
| 3 | opex | |- <. 2o , <. i , a >. >. e. _V |
|
| 4 | 2 3 | eqeltri | |- A.g i a e. _V |
| 5 | isfmlasuc | |- ( ( suc N e. _om /\ A.g i a e. _V ) -> ( A.g i a e. ( Fmla ` suc suc N ) <-> ( A.g i a e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) ) ) ) |
|
| 6 | 1 4 5 | sylancl | |- ( N e. _om -> ( A.g i a e. ( Fmla ` suc suc N ) <-> ( A.g i a e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) ) ) ) |
| 7 | 6 | adantr | |- ( ( N e. _om /\ ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) ) -> ( A.g i a e. ( Fmla ` suc suc N ) <-> ( A.g i a e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) ) ) ) |
| 8 | fmlasssuc | |- ( suc N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
|
| 9 | 1 8 | syl | |- ( N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
| 10 | 9 | sseld | |- ( N e. _om -> ( a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 11 | 10 | com12 | |- ( a e. ( Fmla ` suc N ) -> ( N e. _om -> a e. ( Fmla ` suc suc N ) ) ) |
| 12 | 11 | imim2i | |- ( ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) -> ( A.g i a e. ( Fmla ` suc N ) -> ( N e. _om -> a e. ( Fmla ` suc suc N ) ) ) ) |
| 13 | 12 | com23 | |- ( ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc suc N ) ) ) ) |
| 14 | 13 | impcom | |- ( ( N e. _om /\ ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) ) -> ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 15 | gonanegoal | |- ( u |g v ) =/= A.g i a |
|
| 16 | eqneqall | |- ( ( u |g v ) = A.g i a -> ( ( u |g v ) =/= A.g i a -> a e. ( Fmla ` suc suc N ) ) ) |
|
| 17 | 15 16 | mpi | |- ( ( u |g v ) = A.g i a -> a e. ( Fmla ` suc suc N ) ) |
| 18 | 17 | eqcoms | |- ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc suc N ) ) |
| 19 | 18 | a1i | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 20 | 19 | rexlimdva | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 21 | df-goal | |- A.g j u = <. 2o , <. j , u >. >. |
|
| 22 | 2 21 | eqeq12i | |- ( A.g i a = A.g j u <-> <. 2o , <. i , a >. >. = <. 2o , <. j , u >. >. ) |
| 23 | 2oex | |- 2o e. _V |
|
| 24 | opex | |- <. i , a >. e. _V |
|
| 25 | 23 24 | opth | |- ( <. 2o , <. i , a >. >. = <. 2o , <. j , u >. >. <-> ( 2o = 2o /\ <. i , a >. = <. j , u >. ) ) |
| 26 | 22 25 | bitri | |- ( A.g i a = A.g j u <-> ( 2o = 2o /\ <. i , a >. = <. j , u >. ) ) |
| 27 | vex | |- i e. _V |
|
| 28 | vex | |- a e. _V |
|
| 29 | 27 28 | opth | |- ( <. i , a >. = <. j , u >. <-> ( i = j /\ a = u ) ) |
| 30 | eleq1w | |- ( u = a -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
|
| 31 | 30 | eqcoms | |- ( a = u -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
| 32 | 31 11 | biimtrdi | |- ( a = u -> ( u e. ( Fmla ` suc N ) -> ( N e. _om -> a e. ( Fmla ` suc suc N ) ) ) ) |
| 33 | 32 | impcomd | |- ( a = u -> ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 34 | 29 33 | simplbiim | |- ( <. i , a >. = <. j , u >. -> ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 35 | 26 34 | simplbiim | |- ( A.g i a = A.g j u -> ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 36 | 35 | com12 | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( A.g i a = A.g j u -> a e. ( Fmla ` suc suc N ) ) ) |
| 37 | 36 | adantr | |- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ j e. _om ) -> ( A.g i a = A.g j u -> a e. ( Fmla ` suc suc N ) ) ) |
| 38 | 37 | rexlimdva | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. j e. _om A.g i a = A.g j u -> a e. ( Fmla ` suc suc N ) ) ) |
| 39 | 20 38 | jaod | |- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 40 | 39 | rexlimdva | |- ( N e. _om -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 41 | 40 | adantr | |- ( ( N e. _om /\ ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) ) -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 42 | 14 41 | jaod | |- ( ( N e. _om /\ ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) ) -> ( ( A.g i a e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) A.g i a = ( u |g v ) \/ E. j e. _om A.g i a = A.g j u ) ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 43 | 7 42 | sylbid | |- ( ( N e. _om /\ ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) ) -> ( A.g i a e. ( Fmla ` suc suc N ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 44 | 43 | ex | |- ( N e. _om -> ( ( A.g i a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc N ) ) -> ( A.g i a e. ( Fmla ` suc suc N ) -> a e. ( Fmla ` suc suc N ) ) ) ) |