This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goaln0 | |- ( A.g i A e. ( Fmla ` N ) -> N =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-goal | |- A.g i A = <. 2o , <. i , A >. >. |
|
| 2 | 2on0 | |- 2o =/= (/) |
|
| 3 | 2 | neii | |- -. 2o = (/) |
| 4 | 3 | intnanr | |- -. ( 2o = (/) /\ <. i , A >. = <. k , j >. ) |
| 5 | 2oex | |- 2o e. _V |
|
| 6 | opex | |- <. i , A >. e. _V |
|
| 7 | 5 6 | opth | |- ( <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. <-> ( 2o = (/) /\ <. i , A >. = <. k , j >. ) ) |
| 8 | 4 7 | mtbir | |- -. <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. |
| 9 | goel | |- ( ( k e. _om /\ j e. _om ) -> ( k e.g j ) = <. (/) , <. k , j >. >. ) |
|
| 10 | 9 | eqeq2d | |- ( ( k e. _om /\ j e. _om ) -> ( <. 2o , <. i , A >. >. = ( k e.g j ) <-> <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. ) ) |
| 11 | 8 10 | mtbiri | |- ( ( k e. _om /\ j e. _om ) -> -. <. 2o , <. i , A >. >. = ( k e.g j ) ) |
| 12 | 11 | rgen2 | |- A. k e. _om A. j e. _om -. <. 2o , <. i , A >. >. = ( k e.g j ) |
| 13 | ralnex2 | |- ( A. k e. _om A. j e. _om -. <. 2o , <. i , A >. >. = ( k e.g j ) <-> -. E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) |
|
| 14 | 12 13 | mpbi | |- -. E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) |
| 15 | 14 | intnan | |- -. ( <. 2o , <. i , A >. >. e. _V /\ E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) |
| 16 | eqeq1 | |- ( x = <. 2o , <. i , A >. >. -> ( x = ( k e.g j ) <-> <. 2o , <. i , A >. >. = ( k e.g j ) ) ) |
|
| 17 | 16 | 2rexbidv | |- ( x = <. 2o , <. i , A >. >. -> ( E. k e. _om E. j e. _om x = ( k e.g j ) <-> E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) ) |
| 18 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. k e. _om E. j e. _om x = ( k e.g j ) } |
|
| 19 | 17 18 | elrab2 | |- ( <. 2o , <. i , A >. >. e. ( Fmla ` (/) ) <-> ( <. 2o , <. i , A >. >. e. _V /\ E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) ) |
| 20 | 15 19 | mtbir | |- -. <. 2o , <. i , A >. >. e. ( Fmla ` (/) ) |
| 21 | 1 20 | eqneltri | |- -. A.g i A e. ( Fmla ` (/) ) |
| 22 | fveq2 | |- ( N = (/) -> ( Fmla ` N ) = ( Fmla ` (/) ) ) |
|
| 23 | 22 | eleq2d | |- ( N = (/) -> ( A.g i A e. ( Fmla ` N ) <-> A.g i A e. ( Fmla ` (/) ) ) ) |
| 24 | 21 23 | mtbiri | |- ( N = (/) -> -. A.g i A e. ( Fmla ` N ) ) |
| 25 | 24 | necon2ai | |- ( A.g i A e. ( Fmla ` N ) -> N =/= (/) ) |