This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusker.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| ghmquskerco.b | |- B = ( Base ` G ) |
||
| ghmquskerco.l | |- L = ( x e. B |-> [ x ] ( G ~QG K ) ) |
||
| Assertion | ghmquskerco | |- ( ph -> F = ( J o. L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | ghmquskerco.b | |- B = ( Base ` G ) |
|
| 7 | ghmquskerco.l | |- L = ( x e. B |-> [ x ] ( G ~QG K ) ) |
|
| 8 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 9 | 6 8 | ghmf | |- ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) ) |
| 10 | 2 9 | syl | |- ( ph -> F : B --> ( Base ` H ) ) |
| 11 | 10 | ffnd | |- ( ph -> F Fn B ) |
| 12 | 2 | adantr | |- ( ( ph /\ x e. B ) -> F e. ( G GrpHom H ) ) |
| 13 | 12 | imaexd | |- ( ( ph /\ x e. B ) -> ( F " [ x ] ( G ~QG K ) ) e. _V ) |
| 14 | 13 | uniexd | |- ( ( ph /\ x e. B ) -> U. ( F " [ x ] ( G ~QG K ) ) e. _V ) |
| 15 | 14 | ralrimiva | |- ( ph -> A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V ) |
| 16 | eqid | |- ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) |
|
| 17 | 16 | fnmpt | |- ( A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) |
| 18 | 15 17 | syl | |- ( ph -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) |
| 19 | ovex | |- ( G ~QG K ) e. _V |
|
| 20 | 19 | ecelqsi | |- ( x e. B -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) ) |
| 22 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 23 | 6 | a1i | |- ( ph -> B = ( Base ` G ) ) |
| 24 | ovexd | |- ( ph -> ( G ~QG K ) e. _V ) |
|
| 25 | reldmghm | |- Rel dom GrpHom |
|
| 26 | 25 | ovrcl | |- ( F e. ( G GrpHom H ) -> ( G e. _V /\ H e. _V ) ) |
| 27 | 26 | simpld | |- ( F e. ( G GrpHom H ) -> G e. _V ) |
| 28 | 2 27 | syl | |- ( ph -> G e. _V ) |
| 29 | 22 23 24 28 | qusbas | |- ( ph -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ x e. B ) -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 31 | 21 30 | eleqtrd | |- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( Base ` Q ) ) |
| 32 | 7 | a1i | |- ( ph -> L = ( x e. B |-> [ x ] ( G ~QG K ) ) ) |
| 33 | 5 | a1i | |- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
| 34 | imaeq2 | |- ( q = [ x ] ( G ~QG K ) -> ( F " q ) = ( F " [ x ] ( G ~QG K ) ) ) |
|
| 35 | 34 | unieqd | |- ( q = [ x ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ x ] ( G ~QG K ) ) ) |
| 36 | 31 32 33 35 | fmptco | |- ( ph -> ( J o. L ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) ) |
| 37 | 36 | fneq1d | |- ( ph -> ( ( J o. L ) Fn B <-> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) ) |
| 38 | 18 37 | mpbird | |- ( ph -> ( J o. L ) Fn B ) |
| 39 | ecexg | |- ( ( G ~QG K ) e. _V -> [ x ] ( G ~QG K ) e. _V ) |
|
| 40 | 19 39 | ax-mp | |- [ x ] ( G ~QG K ) e. _V |
| 41 | 40 7 | fnmpti | |- L Fn B |
| 42 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 43 | fvco2 | |- ( ( L Fn B /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) ) |
|
| 44 | 41 42 43 | sylancr | |- ( ( ph /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) ) |
| 45 | 40 | a1i | |- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. _V ) |
| 46 | 32 45 | fvmpt2d | |- ( ( ph /\ x e. B ) -> ( L ` x ) = [ x ] ( G ~QG K ) ) |
| 47 | 46 | fveq2d | |- ( ( ph /\ x e. B ) -> ( J ` ( L ` x ) ) = ( J ` [ x ] ( G ~QG K ) ) ) |
| 48 | 42 6 | eleqtrdi | |- ( ( ph /\ x e. B ) -> x e. ( Base ` G ) ) |
| 49 | 1 12 3 4 5 48 | ghmquskerlem1 | |- ( ( ph /\ x e. B ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
| 50 | 44 47 49 | 3eqtrrd | |- ( ( ph /\ x e. B ) -> ( F ` x ) = ( ( J o. L ) ` x ) ) |
| 51 | 11 38 50 | eqfnfvd | |- ( ph -> F = ( J o. L ) ) |