This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplcan.b | |- B = ( Base ` G ) |
|
| grplcan.p | |- .+ = ( +g ` G ) |
||
| grpasscan1.n | |- N = ( invg ` G ) |
||
| Assertion | grpasscan1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( N ` X ) .+ Y ) ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.b | |- B = ( Base ` G ) |
|
| 2 | grplcan.p | |- .+ = ( +g ` G ) |
|
| 3 | grpasscan1.n | |- N = ( invg ` G ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 2 4 3 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = ( 0g ` G ) ) |
| 6 | 5 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( N ` X ) ) = ( 0g ` G ) ) |
| 7 | 6 | oveq1d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( ( 0g ` G ) .+ Y ) ) |
| 8 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 9 | 1 2 | grpass | |- ( ( G e. Grp /\ ( X e. B /\ ( N ` X ) e. B /\ Y e. B ) ) -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( X .+ ( ( N ` X ) .+ Y ) ) ) |
| 10 | 9 | 3exp2 | |- ( G e. Grp -> ( X e. B -> ( ( N ` X ) e. B -> ( Y e. B -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( X .+ ( ( N ` X ) .+ Y ) ) ) ) ) ) |
| 11 | 10 | imp | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) e. B -> ( Y e. B -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( X .+ ( ( N ` X ) .+ Y ) ) ) ) ) |
| 12 | 8 11 | mpd | |- ( ( G e. Grp /\ X e. B ) -> ( Y e. B -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( X .+ ( ( N ` X ) .+ Y ) ) ) ) |
| 13 | 12 | 3impia | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` X ) ) .+ Y ) = ( X .+ ( ( N ` X ) .+ Y ) ) ) |
| 14 | 1 2 4 | grplid | |- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 15 | 14 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 16 | 7 13 15 | 3eqtr3d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( N ` X ) .+ Y ) ) = Y ) |