This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgval.x | |- X = ( Base ` G ) |
|
| eqgval.n | |- N = ( invg ` G ) |
||
| eqgval.p | |- .+ = ( +g ` G ) |
||
| eqgval.r | |- R = ( G ~QG S ) |
||
| Assertion | eqgval | |- ( ( G e. V /\ S C_ X ) -> ( A R B <-> ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.x | |- X = ( Base ` G ) |
|
| 2 | eqgval.n | |- N = ( invg ` G ) |
|
| 3 | eqgval.p | |- .+ = ( +g ` G ) |
|
| 4 | eqgval.r | |- R = ( G ~QG S ) |
|
| 5 | 1 2 3 4 | eqgfval | |- ( ( G e. V /\ S C_ X ) -> R = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |
| 6 | 5 | breqd | |- ( ( G e. V /\ S C_ X ) -> ( A R B <-> A { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } B ) ) |
| 7 | brabv | |- ( A { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } B -> ( A e. _V /\ B e. _V ) ) |
|
| 8 | 7 | adantl | |- ( ( ( G e. V /\ S C_ X ) /\ A { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } B ) -> ( A e. _V /\ B e. _V ) ) |
| 9 | simpr1 | |- ( ( ( G e. V /\ S C_ X ) /\ ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) -> A e. X ) |
|
| 10 | 9 | elexd | |- ( ( ( G e. V /\ S C_ X ) /\ ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) -> A e. _V ) |
| 11 | simpr2 | |- ( ( ( G e. V /\ S C_ X ) /\ ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) -> B e. X ) |
|
| 12 | 11 | elexd | |- ( ( ( G e. V /\ S C_ X ) /\ ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) -> B e. _V ) |
| 13 | 10 12 | jca | |- ( ( ( G e. V /\ S C_ X ) /\ ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) -> ( A e. _V /\ B e. _V ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | vex | |- y e. _V |
|
| 16 | 14 15 | prss | |- ( ( x e. X /\ y e. X ) <-> { x , y } C_ X ) |
| 17 | eleq1 | |- ( x = A -> ( x e. X <-> A e. X ) ) |
|
| 18 | eleq1 | |- ( y = B -> ( y e. X <-> B e. X ) ) |
|
| 19 | 17 18 | bi2anan9 | |- ( ( x = A /\ y = B ) -> ( ( x e. X /\ y e. X ) <-> ( A e. X /\ B e. X ) ) ) |
| 20 | 16 19 | bitr3id | |- ( ( x = A /\ y = B ) -> ( { x , y } C_ X <-> ( A e. X /\ B e. X ) ) ) |
| 21 | fveq2 | |- ( x = A -> ( N ` x ) = ( N ` A ) ) |
|
| 22 | id | |- ( y = B -> y = B ) |
|
| 23 | 21 22 | oveqan12d | |- ( ( x = A /\ y = B ) -> ( ( N ` x ) .+ y ) = ( ( N ` A ) .+ B ) ) |
| 24 | 23 | eleq1d | |- ( ( x = A /\ y = B ) -> ( ( ( N ` x ) .+ y ) e. S <-> ( ( N ` A ) .+ B ) e. S ) ) |
| 25 | 20 24 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) <-> ( ( A e. X /\ B e. X ) /\ ( ( N ` A ) .+ B ) e. S ) ) ) |
| 26 | df-3an | |- ( ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) <-> ( ( A e. X /\ B e. X ) /\ ( ( N ` A ) .+ B ) e. S ) ) |
|
| 27 | 25 26 | bitr4di | |- ( ( x = A /\ y = B ) -> ( ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) <-> ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) ) |
| 28 | eqid | |- { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } |
|
| 29 | 27 28 | brabga | |- ( ( A e. _V /\ B e. _V ) -> ( A { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } B <-> ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) ) |
| 30 | 8 13 29 | pm5.21nd | |- ( ( G e. V /\ S C_ X ) -> ( A { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } B <-> ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) ) |
| 31 | 6 30 | bitrd | |- ( ( G e. V /\ S C_ X ) -> ( A R B <-> ( A e. X /\ B e. X /\ ( ( N ` A ) .+ B ) e. S ) ) ) |