This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | |- X = ( Base ` G ) |
|
| gexcl2.2 | |- E = ( gEx ` G ) |
||
| Assertion | gexdvds3 | |- ( ( G e. Grp /\ X e. Fin ) -> E || ( # ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl2.2 | |- E = ( gEx ` G ) |
|
| 3 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 4 | 1 3 | oddvds2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 5 | 4 | 3expa | |- ( ( ( G e. Grp /\ X e. Fin ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 6 | 5 | ralrimiva | |- ( ( G e. Grp /\ X e. Fin ) -> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 7 | hashcl | |- ( X e. Fin -> ( # ` X ) e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. NN0 ) |
| 9 | 8 | nn0zd | |- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. ZZ ) |
| 10 | 1 2 3 | gexdvds2 | |- ( ( G e. Grp /\ ( # ` X ) e. ZZ ) -> ( E || ( # ` X ) <-> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) ) |
| 11 | 9 10 | syldan | |- ( ( G e. Grp /\ X e. Fin ) -> ( E || ( # ` X ) <-> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) ) |
| 12 | 6 11 | mpbird | |- ( ( G e. Grp /\ X e. Fin ) -> E || ( # ` X ) ) |