This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the order of every group element is bounded by N , the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | |- X = ( Base ` G ) |
|
| gexod.2 | |- E = ( gEx ` G ) |
||
| gexod.3 | |- O = ( od ` G ) |
||
| Assertion | gexcl3 | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> E e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | |- X = ( Base ` G ) |
|
| 2 | gexod.2 | |- E = ( gEx ` G ) |
|
| 3 | gexod.3 | |- O = ( od ` G ) |
|
| 4 | simpl | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> G e. Grp ) |
|
| 5 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 6 | r19.2z | |- ( ( X =/= (/) /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> E. x e. X ( O ` x ) e. ( 1 ... N ) ) |
|
| 7 | 5 6 | sylan | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> E. x e. X ( O ` x ) e. ( 1 ... N ) ) |
| 8 | elfzuz2 | |- ( ( O ` x ) e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
|
| 9 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 10 | 8 9 | eleqtrrdi | |- ( ( O ` x ) e. ( 1 ... N ) -> N e. NN ) |
| 11 | 10 | rexlimivw | |- ( E. x e. X ( O ` x ) e. ( 1 ... N ) -> N e. NN ) |
| 12 | 7 11 | syl | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> N e. NN ) |
| 13 | 12 | nnnn0d | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> N e. NN0 ) |
| 14 | 13 | faccld | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> ( ! ` N ) e. NN ) |
| 15 | elfzuzb | |- ( ( O ` x ) e. ( 1 ... N ) <-> ( ( O ` x ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( O ` x ) ) ) ) |
|
| 16 | elnnuz | |- ( ( O ` x ) e. NN <-> ( O ` x ) e. ( ZZ>= ` 1 ) ) |
|
| 17 | dvdsfac | |- ( ( ( O ` x ) e. NN /\ N e. ( ZZ>= ` ( O ` x ) ) ) -> ( O ` x ) || ( ! ` N ) ) |
|
| 18 | 16 17 | sylanbr | |- ( ( ( O ` x ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( O ` x ) ) ) -> ( O ` x ) || ( ! ` N ) ) |
| 19 | 15 18 | sylbi | |- ( ( O ` x ) e. ( 1 ... N ) -> ( O ` x ) || ( ! ` N ) ) |
| 20 | 19 | adantl | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> ( O ` x ) || ( ! ` N ) ) |
| 21 | simpll | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> G e. Grp ) |
|
| 22 | simplr | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> x e. X ) |
|
| 23 | 10 | adantl | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> N e. NN ) |
| 24 | 23 | nnnn0d | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> N e. NN0 ) |
| 25 | 24 | faccld | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> ( ! ` N ) e. NN ) |
| 26 | 25 | nnzd | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> ( ! ` N ) e. ZZ ) |
| 27 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 28 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 29 | 1 3 27 28 | oddvds | |- ( ( G e. Grp /\ x e. X /\ ( ! ` N ) e. ZZ ) -> ( ( O ` x ) || ( ! ` N ) <-> ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 30 | 21 22 26 29 | syl3anc | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> ( ( O ` x ) || ( ! ` N ) <-> ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 31 | 20 30 | mpbid | |- ( ( ( G e. Grp /\ x e. X ) /\ ( O ` x ) e. ( 1 ... N ) ) -> ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) |
| 32 | 31 | ex | |- ( ( G e. Grp /\ x e. X ) -> ( ( O ` x ) e. ( 1 ... N ) -> ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 33 | 32 | ralimdva | |- ( G e. Grp -> ( A. x e. X ( O ` x ) e. ( 1 ... N ) -> A. x e. X ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) ) |
| 34 | 33 | imp | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> A. x e. X ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) |
| 35 | 1 2 27 28 | gexlem2 | |- ( ( G e. Grp /\ ( ! ` N ) e. NN /\ A. x e. X ( ( ! ` N ) ( .g ` G ) x ) = ( 0g ` G ) ) -> E e. ( 1 ... ( ! ` N ) ) ) |
| 36 | 4 14 34 35 | syl3anc | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> E e. ( 1 ... ( ! ` N ) ) ) |
| 37 | elfznn | |- ( E e. ( 1 ... ( ! ` N ) ) -> E e. NN ) |
|
| 38 | 36 37 | syl | |- ( ( G e. Grp /\ A. x e. X ( O ` x ) e. ( 1 ... N ) ) -> E e. NN ) |