This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | |- X = ( Base ` G ) |
|
| gexcl.2 | |- E = ( gEx ` G ) |
||
| gexid.3 | |- .x. = ( .g ` G ) |
||
| gexid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | gexid | |- ( A e. X -> ( E .x. A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl.2 | |- E = ( gEx ` G ) |
|
| 3 | gexid.3 | |- .x. = ( .g ` G ) |
|
| 4 | gexid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | oveq1 | |- ( E = 0 -> ( E .x. A ) = ( 0 .x. A ) ) |
|
| 6 | 1 4 3 | mulg0 | |- ( A e. X -> ( 0 .x. A ) = .0. ) |
| 7 | 5 6 | sylan9eqr | |- ( ( A e. X /\ E = 0 ) -> ( E .x. A ) = .0. ) |
| 8 | 7 | adantrr | |- ( ( A e. X /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( E .x. A ) = .0. ) |
| 9 | oveq1 | |- ( y = E -> ( y .x. x ) = ( E .x. x ) ) |
|
| 10 | 9 | eqeq1d | |- ( y = E -> ( ( y .x. x ) = .0. <-> ( E .x. x ) = .0. ) ) |
| 11 | 10 | ralbidv | |- ( y = E -> ( A. x e. X ( y .x. x ) = .0. <-> A. x e. X ( E .x. x ) = .0. ) ) |
| 12 | 11 | elrab | |- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( E e. NN /\ A. x e. X ( E .x. x ) = .0. ) ) |
| 13 | 12 | simprbi | |- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } -> A. x e. X ( E .x. x ) = .0. ) |
| 14 | oveq2 | |- ( x = A -> ( E .x. x ) = ( E .x. A ) ) |
|
| 15 | 14 | eqeq1d | |- ( x = A -> ( ( E .x. x ) = .0. <-> ( E .x. A ) = .0. ) ) |
| 16 | 15 | rspcva | |- ( ( A e. X /\ A. x e. X ( E .x. x ) = .0. ) -> ( E .x. A ) = .0. ) |
| 17 | 13 16 | sylan2 | |- ( ( A e. X /\ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) -> ( E .x. A ) = .0. ) |
| 18 | elfvex | |- ( A e. ( Base ` G ) -> G e. _V ) |
|
| 19 | 18 1 | eleq2s | |- ( A e. X -> G e. _V ) |
| 20 | eqid | |- { y e. NN | A. x e. X ( y .x. x ) = .0. } = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
|
| 21 | 1 3 4 2 20 | gexlem1 | |- ( G e. _V -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
| 22 | 19 21 | syl | |- ( A e. X -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
| 23 | 8 17 22 | mpjaodan | |- ( A e. X -> ( E .x. A ) = .0. ) |