This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 4-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1eqsn | |- ( ( A e. B /\ B ~~ 1o ) -> B = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 | |- ( B ~~ 1o <-> E. x B = { x } ) |
|
| 2 | eleq2 | |- ( B = { x } -> ( A e. B <-> A e. { x } ) ) |
|
| 3 | elsni | |- ( A e. { x } -> A = x ) |
|
| 4 | 3 | sneqd | |- ( A e. { x } -> { A } = { x } ) |
| 5 | 2 4 | biimtrdi | |- ( B = { x } -> ( A e. B -> { A } = { x } ) ) |
| 6 | 5 | imp | |- ( ( B = { x } /\ A e. B ) -> { A } = { x } ) |
| 7 | eqtr3 | |- ( ( B = { x } /\ { A } = { x } ) -> B = { A } ) |
|
| 8 | 6 7 | syldan | |- ( ( B = { x } /\ A e. B ) -> B = { A } ) |
| 9 | 8 | ex | |- ( B = { x } -> ( A e. B -> B = { A } ) ) |
| 10 | 9 | exlimiv | |- ( E. x B = { x } -> ( A e. B -> B = { A } ) ) |
| 11 | 1 10 | sylbi | |- ( B ~~ 1o -> ( A e. B -> B = { A } ) ) |
| 12 | 11 | impcom | |- ( ( A e. B /\ B ~~ 1o ) -> B = { A } ) |