This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gch2 | |- ( GCH = _V <-> ran aleph C_ GCH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | |- ran aleph C_ _V |
|
| 2 | sseq2 | |- ( GCH = _V -> ( ran aleph C_ GCH <-> ran aleph C_ _V ) ) |
|
| 3 | 1 2 | mpbiri | |- ( GCH = _V -> ran aleph C_ GCH ) |
| 4 | cardidm | |- ( card ` ( card ` x ) ) = ( card ` x ) |
|
| 5 | iscard3 | |- ( ( card ` ( card ` x ) ) = ( card ` x ) <-> ( card ` x ) e. ( _om u. ran aleph ) ) |
|
| 6 | 4 5 | mpbi | |- ( card ` x ) e. ( _om u. ran aleph ) |
| 7 | elun | |- ( ( card ` x ) e. ( _om u. ran aleph ) <-> ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) ) |
|
| 8 | 6 7 | mpbi | |- ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) |
| 9 | fingch | |- Fin C_ GCH |
|
| 10 | nnfi | |- ( ( card ` x ) e. _om -> ( card ` x ) e. Fin ) |
|
| 11 | 9 10 | sselid | |- ( ( card ` x ) e. _om -> ( card ` x ) e. GCH ) |
| 12 | 11 | a1i | |- ( ran aleph C_ GCH -> ( ( card ` x ) e. _om -> ( card ` x ) e. GCH ) ) |
| 13 | ssel | |- ( ran aleph C_ GCH -> ( ( card ` x ) e. ran aleph -> ( card ` x ) e. GCH ) ) |
|
| 14 | 12 13 | jaod | |- ( ran aleph C_ GCH -> ( ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) -> ( card ` x ) e. GCH ) ) |
| 15 | 8 14 | mpi | |- ( ran aleph C_ GCH -> ( card ` x ) e. GCH ) |
| 16 | vex | |- x e. _V |
|
| 17 | alephon | |- ( aleph ` suc x ) e. On |
|
| 18 | simpr | |- ( ( ran aleph C_ GCH /\ x e. On ) -> x e. On ) |
|
| 19 | simpl | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ran aleph C_ GCH ) |
|
| 20 | alephfnon | |- aleph Fn On |
|
| 21 | fnfvelrn | |- ( ( aleph Fn On /\ x e. On ) -> ( aleph ` x ) e. ran aleph ) |
|
| 22 | 20 18 21 | sylancr | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` x ) e. ran aleph ) |
| 23 | 19 22 | sseldd | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` x ) e. GCH ) |
| 24 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 25 | 24 | adantl | |- ( ( ran aleph C_ GCH /\ x e. On ) -> suc x e. On ) |
| 26 | fnfvelrn | |- ( ( aleph Fn On /\ suc x e. On ) -> ( aleph ` suc x ) e. ran aleph ) |
|
| 27 | 20 25 26 | sylancr | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) e. ran aleph ) |
| 28 | 19 27 | sseldd | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) e. GCH ) |
| 29 | gchaleph2 | |- ( ( x e. On /\ ( aleph ` x ) e. GCH /\ ( aleph ` suc x ) e. GCH ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
|
| 30 | 18 23 28 29 | syl3anc | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 31 | isnumi | |- ( ( ( aleph ` suc x ) e. On /\ ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) -> ~P ( aleph ` x ) e. dom card ) |
|
| 32 | 17 30 31 | sylancr | |- ( ( ran aleph C_ GCH /\ x e. On ) -> ~P ( aleph ` x ) e. dom card ) |
| 33 | 32 | ralrimiva | |- ( ran aleph C_ GCH -> A. x e. On ~P ( aleph ` x ) e. dom card ) |
| 34 | dfac12 | |- ( CHOICE <-> A. x e. On ~P ( aleph ` x ) e. dom card ) |
|
| 35 | 33 34 | sylibr | |- ( ran aleph C_ GCH -> CHOICE ) |
| 36 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 37 | 35 36 | sylib | |- ( ran aleph C_ GCH -> dom card = _V ) |
| 38 | 16 37 | eleqtrrid | |- ( ran aleph C_ GCH -> x e. dom card ) |
| 39 | cardid2 | |- ( x e. dom card -> ( card ` x ) ~~ x ) |
|
| 40 | engch | |- ( ( card ` x ) ~~ x -> ( ( card ` x ) e. GCH <-> x e. GCH ) ) |
|
| 41 | 38 39 40 | 3syl | |- ( ran aleph C_ GCH -> ( ( card ` x ) e. GCH <-> x e. GCH ) ) |
| 42 | 15 41 | mpbid | |- ( ran aleph C_ GCH -> x e. GCH ) |
| 43 | 16 | a1i | |- ( ran aleph C_ GCH -> x e. _V ) |
| 44 | 42 43 | 2thd | |- ( ran aleph C_ GCH -> ( x e. GCH <-> x e. _V ) ) |
| 45 | 44 | eqrdv | |- ( ran aleph C_ GCH -> GCH = _V ) |
| 46 | 3 45 | impbii | |- ( GCH = _V <-> ran aleph C_ GCH ) |