This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gch3 | |- ( GCH = _V <-> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( GCH = _V /\ x e. On ) -> x e. On ) |
|
| 2 | fvex | |- ( aleph ` x ) e. _V |
|
| 3 | simpl | |- ( ( GCH = _V /\ x e. On ) -> GCH = _V ) |
|
| 4 | 2 3 | eleqtrrid | |- ( ( GCH = _V /\ x e. On ) -> ( aleph ` x ) e. GCH ) |
| 5 | fvex | |- ( aleph ` suc x ) e. _V |
|
| 6 | 5 3 | eleqtrrid | |- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) e. GCH ) |
| 7 | gchaleph2 | |- ( ( x e. On /\ ( aleph ` x ) e. GCH /\ ( aleph ` suc x ) e. GCH ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
|
| 8 | 1 4 6 7 | syl3anc | |- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 9 | 8 | ralrimiva | |- ( GCH = _V -> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 10 | alephgch | |- ( ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ( aleph ` x ) e. GCH ) |
|
| 11 | 10 | ralimi | |- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> A. x e. On ( aleph ` x ) e. GCH ) |
| 12 | alephfnon | |- aleph Fn On |
|
| 13 | ffnfv | |- ( aleph : On --> GCH <-> ( aleph Fn On /\ A. x e. On ( aleph ` x ) e. GCH ) ) |
|
| 14 | 12 13 | mpbiran | |- ( aleph : On --> GCH <-> A. x e. On ( aleph ` x ) e. GCH ) |
| 15 | 11 14 | sylibr | |- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> aleph : On --> GCH ) |
| 16 | 15 | frnd | |- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ran aleph C_ GCH ) |
| 17 | gch2 | |- ( GCH = _V <-> ran aleph C_ GCH ) |
|
| 18 | 16 17 | sylibr | |- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> GCH = _V ) |
| 19 | 9 18 | impbii | |- ( GCH = _V <-> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |