This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | engch | |- ( A ~~ B -> ( A e. GCH <-> B e. GCH ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enfi | |- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
|
| 2 | sdomen1 | |- ( A ~~ B -> ( A ~< x <-> B ~< x ) ) |
|
| 3 | pwen | |- ( A ~~ B -> ~P A ~~ ~P B ) |
|
| 4 | sdomen2 | |- ( ~P A ~~ ~P B -> ( x ~< ~P A <-> x ~< ~P B ) ) |
|
| 5 | 3 4 | syl | |- ( A ~~ B -> ( x ~< ~P A <-> x ~< ~P B ) ) |
| 6 | 2 5 | anbi12d | |- ( A ~~ B -> ( ( A ~< x /\ x ~< ~P A ) <-> ( B ~< x /\ x ~< ~P B ) ) ) |
| 7 | 6 | notbid | |- ( A ~~ B -> ( -. ( A ~< x /\ x ~< ~P A ) <-> -. ( B ~< x /\ x ~< ~P B ) ) ) |
| 8 | 7 | albidv | |- ( A ~~ B -> ( A. x -. ( A ~< x /\ x ~< ~P A ) <-> A. x -. ( B ~< x /\ x ~< ~P B ) ) ) |
| 9 | 1 8 | orbi12d | |- ( A ~~ B -> ( ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
| 10 | relen | |- Rel ~~ |
|
| 11 | 10 | brrelex1i | |- ( A ~~ B -> A e. _V ) |
| 12 | elgch | |- ( A e. _V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
|
| 13 | 11 12 | syl | |- ( A ~~ B -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
| 14 | 10 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 15 | elgch | |- ( B e. _V -> ( B e. GCH <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
|
| 16 | 14 15 | syl | |- ( A ~~ B -> ( B e. GCH <-> ( B e. Fin \/ A. x -. ( B ~< x /\ x ~< ~P B ) ) ) ) |
| 17 | 9 13 16 | 3bitr4d | |- ( A ~~ B -> ( A e. GCH <-> B e. GCH ) ) |