This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeqd.1 | |- ( ph -> ( comp ` C ) = ( comp ` D ) ) |
|
| comfeqd.2 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| Assertion | comfeqd | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqd.1 | |- ( ph -> ( comp ` C ) = ( comp ` D ) ) |
|
| 2 | comfeqd.2 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 3 | 1 | oveqd | |- ( ph -> ( <. x , y >. ( comp ` C ) z ) = ( <. x , y >. ( comp ` D ) z ) ) |
| 4 | 3 | oveqd | |- ( ph -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 5 | 4 | ralrimivw | |- ( ph -> A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 6 | 5 | ralrimivw | |- ( ph -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 7 | 6 | ralrimivw | |- ( ph -> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 8 | 7 | ralrimivw | |- ( ph -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 9 | 8 | ralrimivw | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 10 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 11 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | eqidd | |- ( ph -> ( Base ` C ) = ( Base ` C ) ) |
|
| 14 | 2 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 15 | 10 11 12 13 14 2 | comfeq | |- ( ph -> ( ( comf ` C ) = ( comf ` D ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) |
| 16 | 9 15 | mpbird | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |