This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuciso.q | |- Q = ( C FuncCat D ) |
|
| fuciso.b | |- B = ( Base ` C ) |
||
| fuciso.n | |- N = ( C Nat D ) |
||
| fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
||
| fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
||
| fucsect.s | |- S = ( Sect ` Q ) |
||
| fucsect.t | |- T = ( Sect ` D ) |
||
| Assertion | fucsect | |- ( ph -> ( U ( F S G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuciso.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuciso.b | |- B = ( Base ` C ) |
|
| 3 | fuciso.n | |- N = ( C Nat D ) |
|
| 4 | fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 6 | fucsect.s | |- S = ( Sect ` Q ) |
|
| 7 | fucsect.t | |- T = ( Sect ` D ) |
|
| 8 | 1 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 9 | 1 3 | fuchom | |- N = ( Hom ` Q ) |
| 10 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 11 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
| 12 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 13 | 4 12 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 14 | 13 | simpld | |- ( ph -> C e. Cat ) |
| 15 | 13 | simprd | |- ( ph -> D e. Cat ) |
| 16 | 1 14 15 | fuccat | |- ( ph -> Q e. Cat ) |
| 17 | 8 9 10 11 6 16 4 5 | issect | |- ( ph -> ( U ( F S G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) ) ) |
| 18 | ovex | |- ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V |
|
| 19 | 18 | rgenw | |- A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V |
| 20 | mpteqb | |- ( A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) e. _V -> ( ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
|
| 21 | 19 20 | mp1i | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 22 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 23 | simprl | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> U e. ( F N G ) ) |
|
| 24 | simprr | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> V e. ( G N F ) ) |
|
| 25 | 1 3 2 22 10 23 24 | fucco | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 26 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 27 | 4 | adantr | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> F e. ( C Func D ) ) |
| 28 | 1 11 26 27 | fucid | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` Q ) ` F ) = ( ( Id ` D ) o. ( 1st ` F ) ) ) |
| 29 | 15 | adantr | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> D e. Cat ) |
| 30 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 31 | 30 26 | cidfn | |- ( D e. Cat -> ( Id ` D ) Fn ( Base ` D ) ) |
| 32 | 29 31 | syl | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( Id ` D ) Fn ( Base ` D ) ) |
| 33 | dffn2 | |- ( ( Id ` D ) Fn ( Base ` D ) <-> ( Id ` D ) : ( Base ` D ) --> _V ) |
|
| 34 | 32 33 | sylib | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( Id ` D ) : ( Base ` D ) --> _V ) |
| 35 | relfunc | |- Rel ( C Func D ) |
|
| 36 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 37 | 35 4 36 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 38 | 2 30 37 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 40 | fcompt | |- ( ( ( Id ` D ) : ( Base ` D ) --> _V /\ ( 1st ` F ) : B --> ( Base ` D ) ) -> ( ( Id ` D ) o. ( 1st ` F ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
|
| 41 | 34 39 40 | syl2anc | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` D ) o. ( 1st ` F ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 42 | 28 41 | eqtrd | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( Id ` Q ) ` F ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 43 | 25 42 | eqeq12d | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) <-> ( x e. B |-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) = ( x e. B |-> ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) ) |
| 44 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 45 | 29 | adantr | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> D e. Cat ) |
| 46 | 39 | ffvelcdmda | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 47 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 48 | 35 5 47 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 49 | 2 30 48 | funcf1 | |- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 50 | 49 | adantr | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 51 | 50 | ffvelcdmda | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 52 | 23 | adantr | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> U e. ( F N G ) ) |
| 53 | 3 52 | nat1st2nd | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> U e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 54 | simpr | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> x e. B ) |
|
| 55 | 3 53 2 44 54 | natcl | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( U ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 56 | 24 | adantr | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> V e. ( G N F ) ) |
| 57 | 3 56 | nat1st2nd | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> V e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 58 | 3 57 2 44 54 | natcl | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( V ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 59 | 30 44 22 26 7 45 46 51 55 58 | issect2 | |- ( ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) /\ x e. B ) -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 60 | 59 | ralbidva | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> A. x e. B ( ( V ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 61 | 21 43 60 | 3bitr4d | |- ( ( ph /\ ( U e. ( F N G ) /\ V e. ( G N F ) ) ) -> ( ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) <-> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
| 62 | 61 | pm5.32da | |- ( ph -> ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
| 63 | df-3an | |- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) ) |
|
| 64 | df-3an | |- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
|
| 65 | 62 63 64 | 3bitr4g | |- ( ph -> ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ ( V ( <. F , G >. ( comp ` Q ) F ) U ) = ( ( Id ` Q ) ` F ) ) <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
| 66 | 17 65 | bitrd | |- ( ph -> ( U ( F S G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) T ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |