This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| fucpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
||
| fucpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| fucpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| fucpropd.a | |- ( ph -> A e. Cat ) |
||
| fucpropd.b | |- ( ph -> B e. Cat ) |
||
| fucpropd.c | |- ( ph -> C e. Cat ) |
||
| fucpropd.d | |- ( ph -> D e. Cat ) |
||
| Assertion | natpropd | |- ( ph -> ( A Nat C ) = ( B Nat D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| 2 | fucpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
|
| 3 | fucpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 4 | fucpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 5 | fucpropd.a | |- ( ph -> A e. Cat ) |
|
| 6 | fucpropd.b | |- ( ph -> B e. Cat ) |
|
| 7 | fucpropd.c | |- ( ph -> C e. Cat ) |
|
| 8 | fucpropd.d | |- ( ph -> D e. Cat ) |
|
| 9 | 1 2 3 4 5 6 7 8 | funcpropd | |- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ f e. ( A Func C ) ) -> ( A Func C ) = ( B Func D ) ) |
| 11 | nfv | |- F/ r ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) |
|
| 12 | nfcsb1v | |- F/_ r [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } |
|
| 13 | 12 | a1i | |- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> F/_ r [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 14 | fvexd | |- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> ( 1st ` f ) e. _V ) |
|
| 15 | nfv | |- F/ s ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) |
|
| 16 | nfcsb1v | |- F/_ s [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } |
|
| 17 | 16 | a1i | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> F/_ s [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 18 | fvexd | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> ( 1st ` g ) e. _V ) |
|
| 19 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 22 | 3 | ad4antr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 23 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 24 | simplr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r = ( 1st ` f ) ) |
|
| 25 | relfunc | |- Rel ( A Func C ) |
|
| 26 | simpllr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) |
|
| 27 | 26 | simpld | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> f e. ( A Func C ) ) |
| 28 | 1st2ndbr | |- ( ( Rel ( A Func C ) /\ f e. ( A Func C ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
|
| 29 | 25 27 28 | sylancr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 30 | 24 29 | eqbrtrd | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r ( A Func C ) ( 2nd ` f ) ) |
| 31 | 23 19 30 | funcf1 | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r : ( Base ` A ) --> ( Base ` C ) ) |
| 32 | 31 | ffvelcdmda | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( r ` x ) e. ( Base ` C ) ) |
| 33 | simpr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s = ( 1st ` g ) ) |
|
| 34 | 26 | simprd | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> g e. ( A Func C ) ) |
| 35 | 1st2ndbr | |- ( ( Rel ( A Func C ) /\ g e. ( A Func C ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
|
| 36 | 25 34 35 | sylancr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
| 37 | 33 36 | eqbrtrd | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s ( A Func C ) ( 2nd ` g ) ) |
| 38 | 23 19 37 | funcf1 | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s : ( Base ` A ) --> ( Base ` C ) ) |
| 39 | 38 | ffvelcdmda | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( s ` x ) e. ( Base ` C ) ) |
| 40 | 19 20 21 22 32 39 | homfeqval | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 41 | 40 | ixpeq2dva | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 42 | 1 | homfeqbas | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 43 | 42 | ad3antrrr | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 44 | 43 | ixpeq1d | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) = X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 45 | 41 44 | eqtrd | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 46 | fveq2 | |- ( x = z -> ( r ` x ) = ( r ` z ) ) |
|
| 47 | fveq2 | |- ( x = z -> ( s ` x ) = ( s ` z ) ) |
|
| 48 | 46 47 | oveq12d | |- ( x = z -> ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) |
| 49 | 48 | cbvixpv | |- X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) |
| 50 | 49 | eleq2i | |- ( a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) <-> a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) |
| 51 | 43 | adantr | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 52 | 51 | adantr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 53 | eqid | |- ( Hom ` A ) = ( Hom ` A ) |
|
| 54 | eqid | |- ( Hom ` B ) = ( Hom ` B ) |
|
| 55 | 1 | ad6antr | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 56 | simplr | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> x e. ( Base ` A ) ) |
|
| 57 | simpr | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> y e. ( Base ` A ) ) |
|
| 58 | 23 53 54 55 56 57 | homfeqval | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 59 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 60 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 61 | 3 | ad7antr | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 62 | 4 | ad7antr | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 63 | 32 | ad5ant13 | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( r ` x ) e. ( Base ` C ) ) |
| 64 | 31 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> r : ( Base ` A ) --> ( Base ` C ) ) |
| 65 | 64 | ffvelcdmda | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( r ` y ) e. ( Base ` C ) ) |
| 66 | 65 | adantr | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( r ` y ) e. ( Base ` C ) ) |
| 67 | 38 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> s : ( Base ` A ) --> ( Base ` C ) ) |
| 68 | 67 | ffvelcdmda | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( s ` y ) e. ( Base ` C ) ) |
| 69 | 68 | adantr | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( s ` y ) e. ( Base ` C ) ) |
| 70 | 30 | ad3antrrr | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> r ( A Func C ) ( 2nd ` f ) ) |
| 71 | 23 53 20 70 56 57 | funcf2 | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( 2nd ` f ) y ) : ( x ( Hom ` A ) y ) --> ( ( r ` x ) ( Hom ` C ) ( r ` y ) ) ) |
| 72 | 71 | ffvelcdmda | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` f ) y ) ` h ) e. ( ( r ` x ) ( Hom ` C ) ( r ` y ) ) ) |
| 73 | fveq2 | |- ( z = y -> ( r ` z ) = ( r ` y ) ) |
|
| 74 | fveq2 | |- ( z = y -> ( s ` z ) = ( s ` y ) ) |
|
| 75 | 73 74 | oveq12d | |- ( z = y -> ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) = ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 76 | 75 | fvixp | |- ( ( a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) /\ y e. ( Base ` A ) ) -> ( a ` y ) e. ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 77 | 76 | ad5ant24 | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( a ` y ) e. ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 78 | 19 20 59 60 61 62 63 66 69 72 77 | comfeqval | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) ) |
| 79 | 39 | ad5ant13 | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( s ` x ) e. ( Base ` C ) ) |
| 80 | fveq2 | |- ( z = x -> ( r ` z ) = ( r ` x ) ) |
|
| 81 | fveq2 | |- ( z = x -> ( s ` z ) = ( s ` x ) ) |
|
| 82 | 80 81 | oveq12d | |- ( z = x -> ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) = ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 83 | 82 | fvixp | |- ( ( a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) /\ x e. ( Base ` A ) ) -> ( a ` x ) e. ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 84 | 83 | ad5ant23 | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( a ` x ) e. ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 85 | 37 | ad3antrrr | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> s ( A Func C ) ( 2nd ` g ) ) |
| 86 | 23 53 20 85 56 57 | funcf2 | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( 2nd ` g ) y ) : ( x ( Hom ` A ) y ) --> ( ( s ` x ) ( Hom ` C ) ( s ` y ) ) ) |
| 87 | 86 | ffvelcdmda | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` g ) y ) ` h ) e. ( ( s ` x ) ( Hom ` C ) ( s ` y ) ) ) |
| 88 | 19 20 59 60 61 62 63 79 69 84 87 | comfeqval | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) |
| 89 | 78 88 | eqeq12d | |- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 90 | 58 89 | raleqbidva | |- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 91 | 52 90 | raleqbidva | |- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> ( A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 92 | 51 91 | raleqbidva | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 93 | 50 92 | sylan2b | |- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 94 | 45 93 | rabeqbidva | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 95 | csbeq1a | |- ( s = ( 1st ` g ) -> { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
|
| 96 | 95 | adantl | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 97 | 94 96 | eqtrd | |- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 98 | 15 17 18 97 | csbiedf | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 99 | csbeq1a | |- ( r = ( 1st ` f ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
|
| 100 | 99 | adantl | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 101 | 98 100 | eqtrd | |- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 102 | 11 13 14 101 | csbiedf | |- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 103 | 9 10 102 | mpoeq123dva | |- ( ph -> ( f e. ( A Func C ) , g e. ( A Func C ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } ) = ( f e. ( B Func D ) , g e. ( B Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) ) |
| 104 | eqid | |- ( A Nat C ) = ( A Nat C ) |
|
| 105 | 104 23 53 20 59 | natfval | |- ( A Nat C ) = ( f e. ( A Func C ) , g e. ( A Func C ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } ) |
| 106 | eqid | |- ( B Nat D ) = ( B Nat D ) |
|
| 107 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 108 | 106 107 54 21 60 | natfval | |- ( B Nat D ) = ( f e. ( B Func D ) , g e. ( B Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 109 | 103 105 108 | 3eqtr4g | |- ( ph -> ( A Nat C ) = ( B Nat D ) ) |