This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| Assertion | sraip | |- ( ph -> ( .r ` W ) = ( .i ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 3 | ovex | |- ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) e. _V |
|
| 4 | fvex | |- ( .r ` W ) e. _V |
|
| 5 | ipid | |- .i = Slot ( .i ` ndx ) |
|
| 6 | 5 | setsid | |- ( ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) e. _V /\ ( .r ` W ) e. _V ) -> ( .r ` W ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 7 | 3 4 6 | mp2an | |- ( .r ` W ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 8 | 1 | adantl | |- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 9 | sraval | |- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
|
| 10 | 2 9 | sylan2 | |- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 11 | 8 10 | eqtrd | |- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 12 | 11 | fveq2d | |- ( ( W e. _V /\ ph ) -> ( .i ` A ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 13 | 7 12 | eqtr4id | |- ( ( W e. _V /\ ph ) -> ( .r ` W ) = ( .i ` A ) ) |
| 14 | 5 | str0 | |- (/) = ( .i ` (/) ) |
| 15 | fvprc | |- ( -. W e. _V -> ( .r ` W ) = (/) ) |
|
| 16 | 15 | adantr | |- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = (/) ) |
| 17 | fv2prc | |- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
|
| 18 | 1 17 | sylan9eqr | |- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
| 19 | 18 | fveq2d | |- ( ( -. W e. _V /\ ph ) -> ( .i ` A ) = ( .i ` (/) ) ) |
| 20 | 14 16 19 | 3eqtr4a | |- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = ( .i ` A ) ) |
| 21 | 13 20 | pm2.61ian | |- ( ph -> ( .r ` W ) = ( .i ` A ) ) |