This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlmpws.b | |- B = ( Base ` F ) |
||
| Assertion | frlmpws | |- ( ( R e. V /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmpws.b | |- B = ( Base ` F ) |
|
| 3 | eqid | |- ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
|
| 4 | 3 | dsmmval2 | |- ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 5 | rlmsca | |- ( R e. V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 6 | 5 | adantr | |- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 7 | 6 | oveq1d | |- ( ( R e. V /\ I e. W ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 8 | 1 | frlmval | |- ( ( R e. V /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 9 | 8 | eqcomd | |- ( ( R e. V /\ I e. W ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = F ) |
| 10 | 9 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` F ) ) |
| 11 | 10 2 | eqtr4di | |- ( ( R e. V /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = B ) |
| 12 | 7 11 | oveq12d | |- ( ( R e. V /\ I e. W ) -> ( ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
| 13 | 4 12 | eqtrid | |- ( ( R e. V /\ I e. W ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
| 14 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 15 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 16 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 17 | 15 16 | pwsval | |- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 18 | 14 17 | mpan | |- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 19 | 18 | adantl | |- ( ( R e. V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 20 | 19 | oveq1d | |- ( ( R e. V /\ I e. W ) -> ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) |`s B ) ) |
| 21 | 13 8 20 | 3eqtr4d | |- ( ( R e. V /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |