This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsval.y | |- Y = ( R ^s I ) |
|
| pwsval.f | |- F = ( Scalar ` R ) |
||
| Assertion | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( F Xs_ ( I X. { R } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsval.y | |- Y = ( R ^s I ) |
|
| 2 | pwsval.f | |- F = ( Scalar ` R ) |
|
| 3 | elex | |- ( R e. V -> R e. _V ) |
|
| 4 | elex | |- ( I e. W -> I e. _V ) |
|
| 5 | simpl | |- ( ( r = R /\ i = I ) -> r = R ) |
|
| 6 | 5 | fveq2d | |- ( ( r = R /\ i = I ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
| 7 | 6 2 | eqtr4di | |- ( ( r = R /\ i = I ) -> ( Scalar ` r ) = F ) |
| 8 | id | |- ( i = I -> i = I ) |
|
| 9 | sneq | |- ( r = R -> { r } = { R } ) |
|
| 10 | xpeq12 | |- ( ( i = I /\ { r } = { R } ) -> ( i X. { r } ) = ( I X. { R } ) ) |
|
| 11 | 8 9 10 | syl2anr | |- ( ( r = R /\ i = I ) -> ( i X. { r } ) = ( I X. { R } ) ) |
| 12 | 7 11 | oveq12d | |- ( ( r = R /\ i = I ) -> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) = ( F Xs_ ( I X. { R } ) ) ) |
| 13 | df-pws | |- ^s = ( r e. _V , i e. _V |-> ( ( Scalar ` r ) Xs_ ( i X. { r } ) ) ) |
|
| 14 | ovex | |- ( F Xs_ ( I X. { R } ) ) e. _V |
|
| 15 | 12 13 14 | ovmpoa | |- ( ( R e. _V /\ I e. _V ) -> ( R ^s I ) = ( F Xs_ ( I X. { R } ) ) ) |
| 16 | 3 4 15 | syl2an | |- ( ( R e. V /\ I e. W ) -> ( R ^s I ) = ( F Xs_ ( I X. { R } ) ) ) |
| 17 | 1 16 | eqtrid | |- ( ( R e. V /\ I e. W ) -> Y = ( F Xs_ ( I X. { R } ) ) ) |