This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmval | |- ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( a = W -> ( subringAlg ` a ) = ( subringAlg ` W ) ) |
|
| 2 | fveq2 | |- ( a = W -> ( Base ` a ) = ( Base ` W ) ) |
|
| 3 | 1 2 | fveq12d | |- ( a = W -> ( ( subringAlg ` a ) ` ( Base ` a ) ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) ) |
| 4 | df-rgmod | |- ringLMod = ( a e. _V |-> ( ( subringAlg ` a ) ` ( Base ` a ) ) ) |
|
| 5 | fvex | |- ( ( subringAlg ` W ) ` ( Base ` W ) ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( W e. _V -> ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) ) |
| 7 | 0fv | |- ( (/) ` ( Base ` W ) ) = (/) |
|
| 8 | 7 | eqcomi | |- (/) = ( (/) ` ( Base ` W ) ) |
| 9 | fvprc | |- ( -. W e. _V -> ( ringLMod ` W ) = (/) ) |
|
| 10 | fvprc | |- ( -. W e. _V -> ( subringAlg ` W ) = (/) ) |
|
| 11 | 10 | fveq1d | |- ( -. W e. _V -> ( ( subringAlg ` W ) ` ( Base ` W ) ) = ( (/) ` ( Base ` W ) ) ) |
| 12 | 8 9 11 | 3eqtr4a | |- ( -. W e. _V -> ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) ) |
| 13 | 6 12 | pm2.61i | |- ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) |