This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resasplit | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 2 | fnresdm | |- ( G Fn B -> ( G |` B ) = G ) |
|
| 3 | uneq12 | |- ( ( ( F |` A ) = F /\ ( G |` B ) = G ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F Fn A /\ G Fn B ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
| 5 | 4 | 3adant3 | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
| 6 | inundif | |- ( ( A i^i B ) u. ( A \ B ) ) = A |
|
| 7 | 6 | reseq2i | |- ( F |` ( ( A i^i B ) u. ( A \ B ) ) ) = ( F |` A ) |
| 8 | resundi | |- ( F |` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) |
|
| 9 | 7 8 | eqtr3i | |- ( F |` A ) = ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) |
| 10 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 11 | 10 | uneq1i | |- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
| 12 | inundif | |- ( ( B i^i A ) u. ( B \ A ) ) = B |
|
| 13 | 11 12 | eqtri | |- ( ( A i^i B ) u. ( B \ A ) ) = B |
| 14 | 13 | reseq2i | |- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( G |` B ) |
| 15 | resundi | |- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
|
| 16 | 14 15 | eqtr3i | |- ( G |` B ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
| 17 | 9 16 | uneq12i | |- ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) |
| 18 | simp3 | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
|
| 19 | 18 | uneq1d | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) |
| 20 | 19 | uneq2d | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 21 | 17 20 | eqtr4id | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 22 | un4 | |- ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |
|
| 23 | 21 22 | eqtrdi | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 24 | unidm | |- ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) = ( F |` ( A i^i B ) ) |
|
| 25 | 24 | uneq1i | |- ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |
| 26 | 23 25 | eqtrdi | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 27 | 5 26 | eqtr3d | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |